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Computation of Transonic Separated Wing Flows
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A computer program called Transonic Navier Stokes (TNS) has been devel-

oped which solves the Euler/Navier-Stokes equations around wings using a zonal

grid approach. In the present zonal scheme, the physical domain of interest is di-

vided into several subdomains called "zones" and the governing equations are solved

interactively. The advantages of the Zonal Grid approach are as follows: 1) the grid

for any subdomain can be generated easily, 2) grids can be, in a sense, adapted to

the solution, 3) different equation sets can be used in different zones, and 4) this

approach allows for a convenient data base organization scheme. Using this code,

separated flows on a NACA 0012 section wing and on the NASA Ames WING

C have been computed. First, the effects of turbulence and artificial dissipation

models incorporated into the code are assessed by comparing the TNS results with

other CFD codes and experiments. Then a series of flow cases are described where

data are available. The computed results, including cases with shock-induced sep-

aration, are in good agreement with experimental data. Finally, some "futflristic"

cases arc presented to demonstrate the abilities of the code for massively separated

cases which do not have experimental data.
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CHAPTER 1

INTRODUCTION

1.1 Background

Ever since the introduction of the Navier-Stokes equations in the early 1800's

by Navier [1] and Stokes [21, we have been confronted with a very challenging

situation. Because of the nonlinear and complex nature of these equations, the

number of closed form analytical solutions has been extremely limited. Hence,

the Navier-Stokes equations were largely unused for several decades, and did not

contribute to the early development of airplanes.

The first major breakthrough in the solution of these equations was intro-

duced by Ludwig Prandtl 13] in 1904. Prandtl brilliantly reasoned that for high

Reynolds number flows, viscous effects would be confined to a thin layer along a

solid surface, called the "Boundary Layer." We owe much of our understanding

of the viscous flow phenomenon to this concept. Although this region occupies

only a small portion of a total flow field, all momentum, heat and mass transfer

to or from the surface must take place through this layer. Outside the bound-

ary layer, fluid behaves like an inviscid flow. This leads us to a very important

conclusion that separate equation sets can be solved in separate domains. There-

fore, aeronautical problems can be approached from different avenues; i.e., using

different equation sets, provided that limitations are kept in proper perspective.

The aforementioned "different equation sets" are subsets of the Navier-Stokes

equations. If the viscous terms are neglected, the resulting equations describe

the motion of an inviscid but nonlinear, compressible and rotational fluid: the

so-called "Euler equations." If the rotationality is ignored, we get nonlinear, com-

pressible and irrotational flow; i.e., the full potential equation which can support

only weak shocks. Further simplification leads to Laplace's equation which de-

scribes an incompressible, inviscid, irrotational and steady flow.

Introduction of digital computers brought a great change to the aeronau-

tical sciences. They opened new avenues and enabled researchers to tackle the

problem of solving the above equation sets. With the advent of computers, a

new discipline of aerodynamics was born, i.e., Computational Fluid Dynamics

(CFD), and researchers attacked problems which were previously unsolvable.

But it was soon realized that compromises had to be made because computer

time and memory limit the range of physical and geometrical scales that can be

resolved. The more complex the geometry, the less physics we can extract. In



terms of numericaltechniques,the choicebetweena complicated set of equations
with simple geometry and a sophisticated geometry with simpler equations had
to be made.

Basically there are three compelling motivations for vigorously developing
Computational Aerodynamics (Chapman [4]). The first one is to provide new

technological capabilities which the wind tunnels cannot offer. For example,

the Reynolds number associated with aircraft flight, the flowfield temperatures

around atmospheric entry vehicles like the space shuttle, hot jet plumes, or store

ejections cannot be easily simulated by wind-tunnels. A second compelling mo-

tivation concerns energy conservation. Wind tunnels consume large amounts of

energy with increasing unit costs every year, whereas computers do not consume

as much energy. The third motivation can be explained in terms of economics.

Chapman [4] indicated that the net cost to conduct a given numerical simula-

tion with a fixed algorithm has decreased ten times every eight years because

computer speed has increased at a much greater rate than computer cost.

Developments of computational aerodynamics have been paced by computer

memory and speed. Naturally, work started with the most simplified equation

sets and configurations and has progressed to more sophisticated geometries with

better approximation of the flow physics. Chapman [4] presents the historical

progress of Computational Aerodynamics in four stages, each of which is a suc-

cessively more refined approximation to the full Navier-Stokes equations. Stage I

is the linearized inviscid approximation or Laplace's equation. Computational

methods which solve this governing equation are called "Panel Methods" and

have been very useful in the design process. The linearized inviscid approxima-

tion contains only 3 terms; whereas the full Navier-Stokes equations represent-

ing conservation of mass, momentum and energy contain altogether 60 partial-

derivative terms when written out in three Cartesian coordinates. Panel methods

provide realistic determinations of pressure distribution, of lift and side forces

in attached subsonic and supersonic flow using small disturbance theory. For an

extensive list of references and survey articles the reader is referred to [4],[5].

The second stage of approximation is called "nonlinear inviscid" and here

only the viscous terms are neglected, but in its most complex form, 27 out of

60 partial derivative terms are retained from the full Navier-Stokes equations.

The transonic small-disturbance equation, the full potential equation and the

Euler equations fall into this category. Nonlinear inviscid computations for tran-

sonic flow are extensive design tools for the aircraft industry today. For more

information please refer to [4].

The third and fourth stage of Computational Aerodynamics involve the

Reynolds-averaged Navier-Stokes equations and the Large Eddy Simulation(LES)



respectively. The Reynolds-averagedNavier-Stokesequationsareobtained by re-
placing the dependentvariablesin the original Navier-Stokesequations by the
mean and fluctuating parts and then time-averaging the equations. This time
interval must be long compared to the characteristic time of turbulent eddy fluc-

tuations and short compared to the characteristic time of the, perhaps, unsteady

main flow. The resulting equations describe the time-dependent flow field but

are not capable of capturing fluctuating turbulent eddies of any length scale; i.e.,

all turbulent eddies must be modeled. In large eddy simulation, the small scale

eddies are modeled while the large eddies are computed. Solving the full Navier-

Stokes equations about a complex geometry at high Reynolds number without

any averaging is yet beyond the reach of present day and the near future super-

computers. For this reason, the "Reynolds-averaged Navier-Stokes" equations in

the "thin-layer" form are used in this project. Therefore, it is necessary to cite

some of the significant steps taken in this relatively new area.

Early work started with the computation of laminar flow which is governed

by the steady Navier-Stokes equations. Although a good survey on laminar flow

research has been done by Peyret and Viviand [6], certain notable efforts are listed

below: The shock wave laminar boundary layer interaction by Mac Cormack [7],

the computation of laminar flow over a compression corner by Carter [8], and

hypersonic flow over blunt bodies by Jain and Adimurty [9]; also, incompressible

flow over bluff bodies and airfoils by Thompson et al. [10] and Hodge and Stone

[11], and supersonic two-dimensional flow over a blunt body with impinging shock

wave by Tannehill et al. [12]. In three-dimensional laminar flow simulation, we

can mention the computation of the flow over an inclined body of revolution

by Li [13], and the laminar flow over three-dimensional compression corners by

Shang and Hankey [14] and Hung and Mac Cormack [15].

Since most aerodynamic flows encountered in actual flight conditions are

turbulent, the Reynolds-averaged Navier-Stokes formulation draws much of the

attention from engineers and scientists. Early turbulent flow simulations started

with two-dimensional flows and include the shock wave/turbulent boundary layer

interaction study by Wilcox [16] and Baldwin and MacCormack [17], and the high

Reynolds number transonic flow computation over airfoils by Deiwert [18]. Some

numerical computations were also carried out for supersonic flow over compres-

sion corners by Wilcox [19], Shang and Hankey [20], and Hung and MacCormack

[21] and axisymmetric afterbody computations were carried out by Hoist [22].

Some of the turbulent simulations yielded very interesting results which closely

modeled the actual physical phenomena: For instance, the unsteady buffeting

of a thick circular arc airfoil in transonic flow was simulated by Levy [23], the

transonic drag polar and lift curve for a supercritical airfoil with buffeting forces

were reported by Deiwert and Bailey [24], and the simulation of transonic aileron

buzz was achieved by Steger and Bailey [25].
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Three-dimensional solutions of turbulent flows with the Reynolds-averaged

equations are relatively few. The first simulations were the flows around relatively

simple geometries; for example the three-dimensional swept shock wave/turbulent

boundary layer interaction by Hung and MacCormack [26], and the flow along

a corner for both transitional and fully turbulent flow by Shang et al. [27[.

Another notable work was the simulation of a separated flow over a hemisphere-

cylinder body at an angle of attack by Pulliam and Steger [28]. In most of these

simulations, the "thin-layer" approximation to the Reynolds-averaged Navier-

Stokes equations devised by Baldwin and Lomax [29] has been utilized. Very

recently, computation of more complex geometries involving more sophisticated

flow physics has been attacked. Work in this area includes the transonic fuselage

and forebody flows of Cosner [30], the hypersonic wing/fuselage interaction of

Shang [31], the supersonic blunt-fin/wall interaction of Hung and Kordulla [32],

the high-subsonic turret flow simulation of Purohit et al. [33], the transonic wing

flow of Mansour [34], the transonic afterbody flows of Deiwert and Rothmund

[35] and Deiwert et al. [36], the transonic wing flows of Agarwal and Deese [37],
the transonic forward-fuselage flow of Chaussee et al. [38], and the high-subsonic

delta wing and low supersonic, shuttle-like flows of Fujii and Kutler [39].

1.2 Motivation

In the previous section, the role of Computational Fluid Dynamics as a re-

search and design tool in aeronautical sciences has been introduced. It was also

stated that there emerged numerous pioneering works in computational Navier-

Stokes technology. Some of the reasons for this movement are explained as fol-

lows: First, the computer hardware(memory and speed) have dramatically im-

proved by the introduction of the so-called supercomputers such as the Cray 1,

Cray XMP, CDC Cyber 205 [4]. Second, there is an increasing demand from

the aircraft industry to utilize more realistic approximations in design prob-

lems. For instance, modern military aircraft must be able to fly in the transonic

regime at high angles of attack with significant regions of separated flow, and

the full Navier-Stokes equations are the proper model equations for this pur-

pose. These reasons have given a tremendous impetus to viscous transonic flow

research, especially focused on flow separation and shock/boundary-layer inter-

action. In an excellent survey about transonic Navier-Stokes technology, Mehta

and Lomax [40} list the flow conditions for which the Navier-Stokes equations ap-

pear to be required: 1) Shock/boundary layer interaction with no separation, 2)

shock-induced turbulent separation with immediate reattachment(shock-induced

separation bubble), and 3) shock-induced separation without reattachment. The

proper treatment of shock/boundary layer interaction, at least locally, necessi-

tates the use of the Navier-Stokes equations I41]. There are primarily two mo-

tivations for understanding separated flows [40]. Since uncontrolled separation

causes stall, controlling and minimizing the effects of separation are desirable.
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Separation can also be usedto improve aerodynamicperformance; for instance,
the rolled up vortex sheetfrom the sharp leadingedgeof a delta wing or strake
createsso-called "nonlinear lift" which can be intelligently exploited by fighter
aircraft designers.

Viscous transonic researchhas been carried out by either viscous-inviscid
interaction proceduresor Navier-Stokesprocedures. The viscous-inviscid inter-
action procedure is quite convenientfor the study of separation becausethe thin
shear layer approximation remainsvalid in mildly separatedflows [3]. Computa-
tionally, interaction codesrequiresignificantly lesscomputer time than Navier-
Stokescodesfor problems with small regions of separation. However, Navier-
Stokesformulations aregenerallymucheasierto code [42]. Moreover, for strong
viscous-inviscid interactions, the current boundary-layer basedschemestend to
break down. The presentstate-of-the-art associatedwith three-dimensional in-
teraction methods applied to separated flows is far from mature 142]. There
is someprogresson computation of turbulent flowsover wings primarily using
integral boundary layer schemes,but theseschemescannot easily compute sep-
arated flows. The interested reader is directed to Refs. [42],[43],[44]for more
information.

The primary difficulties associatedwith Navier-Stokesproceduresare now
restated for emphasis:1) computerspeedand memory limitations, 2) difficulties
in turbulence modeling, and 3) difficulties in geometry definition and grid gen-
eration around sophisticatedgeometries.The Navier-Stokessimulations cited in
the previoussection utilized relatively coarsegrids and required large amountsof
computer time evenon the latest supercomputers.However,the ideaof dividing
the control volume around the geometry into different "blocks" or "zones" and

solving the governing equations interactively seems very attractive, because this

technique reduces the difficulties of the first and third items listed above. This

idea may be elaborated on as follows: Instead of putting the complete data base

into the main computer memory, only the data associated with one grid zone can

be put into main memory while the data from the other zones reside on some

other secondary storage device. This relaxes the computer main memory burden.

Second, and more importantly, this scheme relieves the task of generating grids

around geometrically complex domains such as complete aircraft configurations.

In this fashion, the total flow domain can be divided into multiple zones each of

which may be in a different form to respond to the geometry, boundary condition,

and physical constraints.

In this work, the Euler/Navier-Stokes equations using a zonal grid tech-

nique are solved to study three-dimensional flow separation on wings. For this

purpose a computer code called Transonic Navier Stokes (TNS) has been devel-

oped [45[, which presently utilizes four grid zones for isolated wing geometries.



In this code, the "thin-layer" approximation to the Reynolds-averagedNavier-
Stokesequationsissolvedby utilizing highly clusteredgrids near the body. Away
from the body, the inviscid-rotational featuresof the flow aresimulated utilizing
the Euler equations. To the authors' knowledge, the TNS computer program
representsthe first three-dimensionalEuler/Navier-Stokes zonal algorithm.
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CHAPTER 2

DESCRIPTION OF THE ZONAL PHILOSOPHY

2.1 Introduction

Historically the zonal philosophy is not new. It was used implicitly in the

introduction of Boundary Layer theory by Prandtl [3] where the flow was divided

into two different regions, inviscid and viscous. There are numerous examples of

viscous-inviscid interaction research which use a type of zonal approach. Also,

the zonal philosophy finds an application in turbulence modeling. As described

by Kline et al. [46], zonal turbulence modeling is an attractive alternative to
universal turbulence models.

The extensive use and application of zonal schemes in different forms has

gained popularity recently. Boppe [47] illustrated that using nested grid sys-

tems around complex geometries such as arbitrary wing-body configurations with

winglets, pods, canards and tails makes it very practical to construct transonic

codes. Also, Lee [48], Lee and Ruppert [49}, Atta [50] and Atta and Vadyak [51]

have used the block grid approach for transonic potential computations. Other

zonal grid approaches for the Euler equations have been used by Benek et al.

[52], Hessenius and Pultiam [53], Rai [54] and Hessenius and Rai [55].

Numerical grid generation in three dimensions is one of the biggest pacing

items in Computational Fluid Dynamics. Numerically generated curvilinear co-

ordinate systems are commonly used around arbitrary geometries. Body fitted

systems are especially helpful for the treatment of boundary conditions. In gen-

eral, numerical grid generation involves the transformation of a complex physical

space into a geometrically simple computational domain. When the geometry

of interest in the physical space is simple enough, the transformation can be

achieved in a straightforward manner. But as the geometry becomes more com-

plicated, such as the wing/body/strake/tail combination of a contemporary air-

craft, the issue of grid generation becomes indeed challenging, and sometimes

the domain cannot be mapped into a single block. The practical problems en-

countered in the generation of a single grid about a complex geometry are as

follows: Often times, trying to generate a single grid results in a skewed grid

which causes solution inaccuracies. Another difficulty is obtaining the proper

level of grid refinement in regions of flow gradients, such as a shear layer, a shock

wave or a vortex. Moreover, trying to configure an acceptable grid via tuning of

existing grid generation schemes requires substantial amounts of time and effort.



Oneapproachto this challengingissueis to divide the domain into anumber
of geometrically simplesubdomains,called "blocks" or "zones."Fig. 1 illustrates
the ideaof zonal gridsfor a wing/body/tail combination of a fighter airplane. As
demonstratedhere,eachcomponent is mapped into a simple rectangular compu-
tational box. Therearea number of ways to structure zonalgrids. In general, it
is quite difficult to classify zonalgrid techniquesin a clear and concisefashion. In
Fig. 2, an approachto zonal grid classification is presented. As suggested,zonal
schemescan be divided into two groups. The first group is composedof schemes
with overlapping grid zones,and the secondgroup with zoneswhich do not over-
lap (interface schemes).In the first group (overlapschemes),the overlapping may
be either "complex," i.e., the zonal boundaries don't match each other in any
way,or "simple" wherethe zonalboundariescoincide. The Chimera grid scheme
of Ref. [52]exploits the complex overlapzonal grid technique. The present TNS
code,however,makesuseof the "simple overlap" zonal grid technique. Also, it
is possibleto construct other overlap schemeswhich blend complex and simple
overlap schemes.

The secondgroup of zonal schemesconsistsof "patched" grids which in-
terface eachother at common boundaries. This group can be divided into two
subsetsaccordingto whether the grid lines at the common surfacearecontinuous
or discontinuous. In the first scheme, no discontinuity in function, spacing, or

slope is permitted. The second scheme consists of discontinuous grids. The dis-

continuity can be in the grid spacing, in the function values or in the slope of the

grid lines. Also, combinations of different kinds of discontinuities can be used in

the same grid. This generally occurs when the flow field is divided into different

zones beforehand, and then the grid in each zone is generated independently (see

Refs. [48],[49],[561). The discontinuous grids in Fig. 2 are also "metric discontin-

uous" in the context of Rai's [54] definitions. Interface boundary conditions are

implemented between zones by either interpolation or other special techniques.

For example, a conservative zonal boundary treatment for discontinuous grids is

given in Refs. [53],[54], and [55].

The advantages of zonal grid Schemes are summarized as follows:

1) The grid for any subregion of the domain can be generated easily.

2) The grid can be adapted to the problem. This is achieved by placing

refined zones in regions of high gradients such as shear layers, shock waves,

jets and wakes, vortices, etc., whereas coarse zones are used in regions of small

gradients.

3) Different equation sets can be used in different zones; for instance, the

Navier-Stokes equations are used in regions where viscous and/or heat transfer



effectsare important and the Euler equationsare usedwhere inviscid rotational
effectsare important.

4) With the useof grid zoning,an efficient meshtopology canbe improved,
or an inefficient topology can bemade acceptable.

A measureof grid efficiency,the MeshEfficiencyRatio (MER) wasdefinedin Ref.
[57]. It is the ratio of the numberof grid points on the surfaceof interest to the
number of grid points in an averagetwo-dimensionalsurfaceof the samethree-
dimensional grid. The latter quantity is simply the two-thirds power of the total
number of grid points. Larger valuesof MER, in general,indicate more efficient
grid topologies as opposedto the smaller valuesof MER which represent less
efficient topologies. MER valueson the order of onefor an inviscid grid andon the
order of one-half for a viscousgrid areabout average.Of course,this numbercan
be changcdby up to a factor of two dependingon grid clustering. Representative
valuesof MER for a few well-known isolated-wing grid topologies are shown in
Table 1 for both viscous and inviscid grids. This table was constructed with
conservative stretching estimatesfor all directions. Thus, larger valuesof MER
could be obtained with more rapid stretching. More on the efficiency of mesh
topologies can be found in Refs. 157],and [58].

Table 1. Comparison of several isolated-wing mesh topologies using the MER
efficiency parameter

Mesh topology MER (inviscid) MER (viscous)
H-H 0.38 o.24

C-H O.5O O.32

C-O 0.79 0.50

O-H 0.79 0.50

O-O 1.26 0.79

H-H (zonal) 1.13 0.71

As seen from Table 1, it is difficult to advocate the H-H topology about a

wing involving viscous flow calculations because the boundary layer clustering

at the wing surface must be continued upstream and downstream of the wing as

well as outboard of the wing tip. Thus, many points are wasted, and the MER

is as low as 0.2-0.3. With a zonal grid approach applied to the inefficient H-H

topology, much improved MER values can be obtained as seen by the last entry

in Table 1. However, the complete aircraft configuration is the ultimate aim of

CFD, not isolated wings! Generally, the Cartesian nature of the H-H topology is

an appropriate topology for wing/fuselage geometries. This is because, as seen

in Fig. 1, the H-H grid topology allows each fuselage cross-section to be fitted



with an efficient polar-like grid, whereasthe wing cross-sectionalgrid retains the
Cartesian-like topology. This is a very flexible topology and can be modified

to handle more complicated configurations. For example, in addition to the

wing, other lifting surfaces including canards, strakes and horizontal and vertical

stabilizers can be handled in a straightforward manner.

2.2 Zonal Grid Generation

In TNS, grid generation starts with the generation of a global single-zone

grid which includes the entire flow field. This grid contains no viscous clustering

and has an H-mesh topology in both the spanwise and chordwise directions. The

global grid can be generated from either of two approaches: the elliptic solver

approach of Sorenson and Steger [59], or the parabolic solver approach of Ed-

wards [60]. They have the capability of generating suitable grids about isolated-

wing geometries with either free-air or wind-tunnel wall outer boundaries. For

the most part, the elliptic solver approach of Sorenson, which generates finite-

difference grids by solving a set of Poisson's equations, is used in the present

study. This grid generation method allows control over both grid point spacing

along, and normal to, the boundaries and angles with which the grid lines inter-

sect the boundaries. This control is obtained by specification of the boundary

conditions and the inhomogeneous terms contained within the Poisson's equa-

tion. Once the boundary definition and grid characterictics have been set, the

three-dimensional elliptic code solves the governing equations using a successive

over-relaxation (SOR) procedure.

Once the base grid is generated, it is divided into zones utilizing a "zoning"

algorithm. In the present TNS code an isolated wing grid is configured with four

zones. The first grid zone (Grid 1) is, by and large, the coarse base grid itself

with a small three-dimensional domain left open into which the rest of the grids

and the wing are placed. The second grid zone(Grid 2) fills this open domain,

with a small overlap region in common with Grid 1 and also another small three-

dimensional domain for the third and fourth grids. Grid 2 is constructed so as to

contain twice as many grid points in each spatial direction as the original base

grid. This refinement of Grid 2 relative to the base grid is accomplished via

cubie-spline interpolation.

The final two grid zones (Grids 3 and 4) are designed to capture the upper

and lower surface viscous effects of the wing, respectively. They occupy the space

left open by the block of points removed from Grid 2, again with a small region

of overlap included. Grids 3 and 4 are constructed so as to contain the same

number of points in both the spanwise and chordwise directions as Grid 2. But

since they are to capture the viscous effects of the wing, the grid points in the

normal direction are highly clustered. This four-zone grid topology produces an

10



overall grid with a MER of about 0.8. The outer two grid zonesare topologically
representedin the computational domain as cubes with smaller cubesremoved
from the middle, but the third and fourth grids are representedassimple cubes.

In order to illustrate this zonalgrid topology, a seriesof figuresis presented.
The wing configuration usedhereis the so-called"WING C" which is a research
wing and was designedby a cooperative effort betweenNASA-Ames Research
Center and Lockheed-Georgia.The planform view of the WING C grid is pre-
sented in Fig. 3. The wing has an aspect ratio of 2.6, leading edgesweepof
45 degrees,taper ratio of 0.3, and a twist angle of 8.17degrees. Fig. 4 shows
a perspectiveview of the grid with the symmetry plane highlighted. From this
view, the wing surfacegrid resolution including the treatment of the wing tip can
be seen. A cross-sectionalview of the grid in the vicinity of the wing, showing
details of grid zones2, 3 and 4 at the symmetry plane, is displayed in Fig. 5.
Note that the Navier-Stokesgrid expands in thicknessfrom the leading edgeto-
ward the trailing edgeto better capture the growing boundary layer. In the same
plane, an expandedview of the WING C leadingedgegrid detail is presentedin
Fig. 6. The spanwisecross-sectionalview of the wing grid showingpart of zones
2, 3 and 4 is given in Fig. 7. The elliptic grid generation schemewasused for
the grid just presentedin Figs. 3-7, and wasdesignedfor free-air computations.

As wasmentioned earlier, the elliptic and parabolic grid generatorsareca-
pable of generatinggrids suitable for usewith either free-air or wind-tunnel wall
boundaries. Fig. 8 showsa typical grid with outer boundary positions specified
to coincidewith the position of the wind tunnel walls from the NASA-AmesHigh
Reynolds Number Channel I [61].The grid is plotted in perspectiveso that de-
tails on the upper and lower wind tunnel surfaces,the inflow and outflow planes,
and the wing-symmetry plane are all visible. This grid, which wasgenerated
by the parabolic grid generation approach [60], becomesthe outer coarsegrid
zone (Grid 1). This grid detail nearthe wing/symmetry plane juncture hasbeen
removed. It is in this region that grid zones2, 3 and 4 are located as described
earlier. The wing geometry usedin the wind-tunnel flow simulation of Fig. 8 is
shown in Fig. 9. It is composedof NACA 0012cross-sectionsand hasa taper
ratio of 1.0,a leading-edgesweepof 20degrees,an aspectratio of 3, and isrigged
in the tunnel wall grid at 2 degreesangleof attack.

The total numberof grid pointsassociatedwith the WING C and NACA 0012
grids for free air simulations is 165,321.The individual grid point breakdownfor
each zone is as follows: Grid 1, 63 x 26 x 25 - 40,950; Grid 2, 69 x 29 x 21 =
42,021; Grid 3, 61 x 27 x 25 = 41,175;and Grid 4, 61 x 27 x 25 = 41,175. The
wind-tunnel wall grid for the NACA 0012configuration has fewer grid points; it
is an exact subsetof the NACA 0012wing free-air grid and consistsof 149,071
points (seeFig. 8).
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2.3 Zonal Interface Scheme

The zonal approach introduces a new aspect associated with boundary condi-

tions, namely the interface conditions between neighboring blocks. Whereas the

interior points of each zone are updated using the standard integration scheme,

the boundary points are updated via interpolation. It was pointed out earlier

that the zonal scheme followed here is a "simple overlap" one, and owing to this

feature, the interpolation procedure is greatly simplified. This is because the

grid zones are carefully constructed from a base grid such that surfaces requir-

ing interpolation are coincident. The most complicated zonal interface boundary

condition involves only a series of one-dimensional linear interpolations. This

situation is illustrated in Fig. 10. In this hypothetical case, grid Zone 1 is a

coarse grid which interfaces with Zone 2 which is a fine grid. To facilitate the

implicitness of the iteration algorithm in the present approach, the blocks are

overlapped by one to several mesh-cell widths.

In the interface boundary condition scheme, the idea is to obtain flow field in-

formation from the interior of Zone 1 and to use it to satisfy the proper boundary

conditions on the ABCD surface of Zone 2. Since the grids of Zone 1 and Zone

2 have been constructed to coincide with plane ABCD, the process is greatly

simplified. The ABCD surface is shown in transformed space in Fig. 10b. The

points from both grid zones are indicated. Note that the grid points from Zone

1 represent a subset of the Zone 2 points. Hence, the dependent variables at

the points marked with plus symbols (Zone 2) are computed by a series of linear

interpolations using the points marked with circular symbols (Zone 1). The pro-

cess of interpolating information back from Zone 2 to Zone 1, which is required

for the EFGH surface is even simpler than in the first case. This is because

the interpolation simply becomes "injection." That is, even though interpolation

is carried out, the end result of this operation is the straight transfer of values

from Zone 2 to Zone 1 without interpolation errors. This is because every grid

point in the Zone 1 boundary (EFGH), has an exactly matching point on the

corresponding internal plane (EFGH) of Zone 2. This is readily seen by looking

at Fig. 10b and noting that every Zone 1 point (circular symbols) has an exact

matching point in Zone 2 (plus symbols).

The present interface scheme is organized such that only the two planes

involved in the interpolation need to be defined: the base and target planes.

These interface surfaces are referred to as "planes." However, this is true only in

the computational domain. In the physical domain these "planes" are actually

curved three-dimensional surfaces. Each boundary plane at a grid zone interface,

which requires data for boundary conditions, is called a target plane; and each

interior plane which supplies interpolation data to a target plane, is called a base

plane. For instance in Fig. 10, when we want to obtain flow field information
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from the interior of Zone 1 and to use it as the boundary condition for Zone
2, the ABCD plane becomesthe baseplane in Zone 1 and at the sametime it
becomesa target plane for Zone2. Thesebase and target planes are grouped
into three categories: J planes,K planesand L planes. Each one is definedby
six integers. For example, the J planesare definedby : 1) the grid zonenumber
from which the baseor target surfaceis obtained, 2) the J plane number in that
particular zone,3) the starting K index, 4) the ending K index, 5) the starting L

index, and 6) the ending L index. For instance in Fig. 10, the ABCD and EFGH

planes are typical J planes. The K and L planes are defined in a similar way.

Whereas the base and target plane arrays completely define the dependent

variable values to be used in the interface interpolation process, the independent

variable values (spatial coordinates) are obtained from the grid distribution which

passes through the origin of the coordinate system (the point at the wing root

leading edge). Obviously, these grid distributions do not uniquely represent all

the possible grid distributions that may exist in a general three-dimensional mesh.

However, they offer a very flexible and easy to implement interpolation scheme

with a reasonably small error. Moreover, if the interpolation is, for example, a

simple halving of the mesh which is the case for the most part of the TNS grid,

it is not important to know precise grid coordinates.

At the beginning of each iteration for grid zone NZ, boundary values for all

grid zone NZ interface planes are updated from a storage array called BCBUF

which must be shuffled back and forth from the extended storage. After the

interface planes and any other standard boundary conditions are updated, the

interior solution is updated by using the standard integration algorithm. Then

any base planes that reside in grid zone NZ are interpolated to produce the

corresponding target planes for use in neighboring grid zone interface boundaries.

These target planes are stored in the BCBUF array. This completes the iteration

for grid zone NZ and the algorithm proceeds to grid zone NZ+I.

A zonal boundary scheme in an ideal sense should be conservative and should

permit distortion-free movement of flow discontinuities such as shocks and slip

surfaces across zonal interfaces. Let us investigate our zonal boundary scheme

with regards to this condition. The upper and lower grid interfaces between the

inner Euler (zone 2) and Navier-Stokes blocks (zones 3 and 4) are one-to-one

in both the _ and 77 directions (streamwise and spanwise directions for a wing

topology), but in the q direction these planes involve a spacing discontinuity or

"metric discontinuity." This feature can be seen most easily in the grid plots

of the Figs. 4-7. This is important because the interpolation process utilized

automatically becomes an "injection" for these interface boundaries and therefore

is conservative. Thus, a strong shock wave crossing these boundaries, which is

quite likely to occur, should do so with minimal numerical inaccuracies. The
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other interface boundary planes are composed of discontinuous grids and, in

general, are not conservative, but could be made conservative if necessary by

using the approach of Rai [54], and Hessenius and Rai [55].

2.4 Data Management

Once the grid is generated and divided into the proper zones, the flow solver

is initiated. The iteration procedure starts in the outer Euler blocks (first Grid 1,

then Grid 2) and ends with the two Navier-Stokes blocks, first the upper Navier-

Stokes block (Grid 3) and then the lower block (Grid 4). Only one iteration

using a spatially varying time step is completed in each zone before passing to

the next. However, many iteration and/or time-stepping strategies could be used

to improve convergence. Only the flow field solution (Q arrays), transformation

Jacobian (J), metric quantities, and the turbulence model arrays (when appro-

priate) associated with a single block reside in main memory of the Cray-XMP

at a time. The information associated with the other blocks resides in extended

storage. On the Cray XMP this device is called the Solid State Device or SSD.

The SSD is utilized functionally in the same manner as standard rotating disk

extended storage. However, the SSD extended storage is physically made up of

semiconductor memory and therefore is much faster. Using the SSD instead of

disk greatly reduces I/O wait time, and for jobs which are normally I/O bound

this is a significant advantage.

In the present zonal approach, the use of the SSD allows a great deal of

flexibility because a larger number of grid blocks can be supported without sig-

nificant additions to main memory. Of course the limiting factor with regard to

this point is the size of SSD. The SSD installed with the NASA Ames Cray XMP

presently has 16 million 64-bit words of memory. This can easily be extended

to 32 million words if half precision (32 bits) is used. The current version of the

TNS code, with grid dimensions as outlined above in the grid generation section,

requires 5.8 million words of SSD storage. All arrays on the SSD are stored in

64-bit precision with the exception of the metric arrays which are stored with

32-bit precision. A test was performed with 64-bit metric storage that produced

results very close to the case with 32-bit metric storage.

To allow more space in main memory, the metrics are shuffled into main

memory from the SSD in two-dimensional planes as needed. This allows the

maximum grid size of each grid zone to be about 50,000 points. Because the flow

solver algorithm used in TNS is an Alternating Direction Implicit (ADI) algo-

rithm with implicit sweeps in all three directions, the metrics must be transferred

into main memory with three different orientations, in x-y planes, x-z planes and

y-z planes. Thus, there are three different metric orientations stored on the SSD.

Because of the availability of so much storage on the SSD, this does not cause
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any problem and makesoverall memory management more efficient. In addition,

each of the metric arrays is required in main memory several times for each grid

zone during each iteration. This places extreme demands on the TNS I/O re-

quirements. Nevertheless, with the efficiency level afforded by the SSD, these

I/O requirements are handled without problem.
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Fig. 1. Body-conforming zonal grids of a fighter aircraft configuration in the physical

and computational spaces.
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Fig. 3. Planform view of WING C: AR = 2.6, ALE = 45°, O_TWIST = 8-17°,

TR = O.3.
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Fig. 4. Perspective view of embedded grid with upper symmetry plane (y = O, z > O)

and wing surface highlighted.
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CHAPTER 3

DESCRIPTION OF THE PHYSICAL EQUATIONS

AND THE NUMERICAL METHODS

3.1 Introduction

The equations solved in this study are the Euler and Reynolds-averaged

Navier-Stokes equations written in strong conservation form. The Reynolds-

averaged equations are simplified by using the standard thin-layer approximation

for the viscous terms. Once the zonal scheme is developed, any of the standard

Navier-Stokes integration algorithms can be used. In this study, the basic gov-

erning equations and numerical algorithm including the turbulence model have

been taken from the Pulliam-Steger ARC3D computer code [62]. To establish a

basic level of understanding for the present approach, certain characteristics of

the ARC3D computer code used within TNS are now briefly discussed.

The governing equations are generally nondimensionalized by free-stream

quantities and are transformed to the computational domain (_,r/, _') so as to

preserve the strong conservation form of the equations (see Sec. 3.2). The time-

dependent metrics which occur in the most general form of the Euler/Navier-

Stokes equations have been omitted. This was done to save computer memory.

Thus, the present formulation is incapable of time varying grids but still has the

capability of resolving time-dependent flow-field physics. However, adding the

time-dependent grid capability back into the present code is not a difficult task.

Two numerical algorithms have been investigated within the TNS computer

code, an ADI algorithm which solves block-tridiagonal matrices along each coor-

dinate direction and a diagonalized algorithm which solves scalar pentadiagonal

matrices along each coordinate direction (see Sec. 3.3). The first algorithm is

a variation of the Beam-Warming ADI scheme 163], and the second is an ex-

tension of this scheme due to Pulliam and Chaussee [64 I. Both schemes use the

standard second-order-accurate central differencing of the governing equations to

construct the appropriate spatial differencing scheme. The block scheme uses a

fourth-order-accurate smoothing operator on the right-hand side of the iteration

algorithm and a second-order-accurate smoothing operator on the left-hand side.

The diagonal scheme uses a fourth-order-accurate smoothing operator on both

the left- and right-hand sides.

The diagonal algorithm has been implemented with two spatially varying
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time-step philosophies; one which scales the time step with the transformation

Jacobian and the other with a combination Jacobian/local-solution variation.

The block algorithm uses a time-step which is constant in a spatial sense as well

as from grid zone to grid zone.

All of the results presented in this report have been computed using the di-

agonal algorithm with fourth-order implicit smoothing and the Jacobian-scaled

time-step variation. This algorithm combination seemed to be the most compu-

tationally efficient of all the variations tested. More discussion of these aspects

can be found in Flores [651 where a comparison of these algorithm variations

in conjunction with zonal grid variations has been made. The turbulence model

used in the TNS computer program was the Baldwin-Lomax algebraic model [29]

because of the ease with which it can be implemented.

3.2 Governing Equations and Approximations

3.2.1 Equations in Non-Dimensional Form

The strong conservation law form of the Navier-Stokes equations are used

for shock capturing purposes. The equations in Cartesian coordinates in non-

dimensional form can be written as (cf. Peyret and Viviand [66])

where

OQ OE OF Oa OE. or. Oa_ (3.1)
O-7+ -_z + N + Oz - Ox + _ + 0_-

P

pu

Q= pv ,

7

E

pupu 2 -_ p

[ puv
i paw
Lu(e + p)

, F=

PY

puv

pv2-i p

pvw

v(e + p)

pvw

pw 2 +p

w(e + p)

(3.2)

I°]Txx

E, = Re -1 I ryz ,

Tzx

Fu= Re -1

0

Txy

Tyy

Tzy

fly

, G. = Re- 1 0]Txz

Tyz

Tzz

Z_
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with

r_ = A(u_ + vy + Wz) + 2tzu_

run = A(u_ + vu + wz) + 2_vy

rzz = A(u_ + v_ + wz) + 2uw_

r_y = r_x = u(uy + v_)

r_z = rz_ = U(Uz + w_)

ruz = _zu = U(Vz + wy)

flz = 3_Pr-lcg_et + ur_ + Vrzy + Wrzz

fly = 7_Pr-lOyel + uryz + Vryy + wry_

flz = "/aPr-lO_eI + Urz_ + vrz u + wrz_

el =ep -1-0.5(u 2+v 2+w e)

(3.3)

The Cartesian velocity components u, v, and w are nondimensionalized by

aoo (the free-stream speed of sound), density p is nondimensionalized by p_ ;

and the total energy per unit volume e is nondimensionalized by p_a 2. Pressure

can be found from the ideal gas law as

p = (q - 1)[e - 0.hp(u 2 + v 2 + w2)] (3.4)

and throughout _ is the ratio of the specific heats. Also, _ is the coefficient

of thermal conductivity, # is the dynamic viscosity, and A from the Stokes'

hypothesis is -2/31_. The Reynolds number is Re and the Prandtl number is
Pr.

To enhance numerical accuracy and efficiency and to handle boundary con-

ditions more easily, the governing equations are transformed from the Cartesian

coordinates to general curvilinear coordinates(Fig. 11) where

r=t

_--_(x,y,z,t)

_ = ,7(_,y,z,t) (3.5)

f = f(x,y,z,t).

The resulting transformed equations are not much more complicated than the

original Cartesian set and can be written in nondimensional form as

c9 ^ 0 0 ^
0 0 + _.) + (P- P.) + _v) 0 (3.6)
t)r _(E - N _(G - =

where

0--_J 1

puU + _p

pv,, __= d-1 pvU+ GyP

7] | p_v+ czp
t (e + p)V - _tp
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and

/_ = j-1

puV + rlzp

pvV + rlsP ,

pwV + rlzp

(e + p)V - ,l_p

dzJ 1

puW + f_:p

pvW if- fyp

pwW + fzP

(e + p)w - _p

(3.7)

U = _t + _,,u + _yv + Gw

V = rlt + rlzu + rlyv + rlzW (3.8)

W =ft +_u +_yV +fzw.

where U, V, and W are contravariant velocity components written without metric

normalization. The viscous flux terms are given by

0

_, = j-1Re-1 _TU_ + _yryy + _zryz ,

_rz_ + (yr_y + _zr_

I ° lrlzTzz ÷ rlyTzy q- rlzTxz

F'v = J -1Re-1 rj_ry_ + rlyryy + rl_ruz , (3.9)

[ _lxTzx _ rlyTzy • rlzTzzn_Z_ + ,TyZ_+ ,7_Zz

I °f_7-zx + fyrzy + fzrx_

Gv = J-1Re-z fzryz -_ fyTyy + ffzTyz

fxTzx q'- fyTzy _- fzTzzf_ + guru + fz_z
where the components of the shear-stress tensor and heat-flux vector in nondi-

mensional form were given in (3.3). Here, the Cartesian derivatives are expanded

in _, r/, f space via chain-rule relations such as

u_ = _u,, + r/su n + f_u;

Finally, the metric terms are obtained from chain-rule expansion of x(, Yn, etc.,

and solved for _,, _y, etc., to give

_ = J(y,Tz_ - y¢zn) rl_ = J(z_y_ - y,,z;)

_y = J(z,x_ - x,zf) fly = J(x_z; - xfz_)

_z = g(xny_ - y,Txf) rlz = J(y_x; - x_y;)

fz = J(Y_Zn - z_yn) _t = --Xr_z -- Yr_y -- Zr_z

qy = d(xoz_ - x_z,) tit = - Xrrlz - yrrly - zrrlz

fz = J(x_y, - y_x,_) ft = -- Xrf_ -- Yrfy -- Zrfz

(3.10)
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and

j-1 = x_ynz _ + x;y_z,7 + xny;z, _ x_Y;Z,1 _ xnY_Z; _ x_YnZ_

3.2.2 Thin-Layer Approximation

In high Reynolds number flows, the viscous effects are confined to a thin layer

near rigid boundaries. In most cases, there are only enough grid points to resolve

the gradients normal to the body by clustering the grid in the normal direction,

and resolution along the body is similar to what is needed in inviscid flow. As a

result, even though the full derivatives are retained in the equations, the gradients

along the body are not resolved unless the streamwise and circumferential grid

spacings are sufficiently small. Hence, for many Navier-Stokes computations,

the viscous derivatives along the body are dropped. This leads to the thin-layer

Navier-Stokes equations.

The thin-layer model requires a boundary layer type coordinate system. In

our case, the _ and r/ directions are along the body and the viscous derivatives

associated with these directions are dropped, whereas the terms in f are retained

and the body surface is mapped onto a constant f surface. Thus, Eq. (3.6)

simplifies to

a,C2 + O_E + O.F + a:G = Re-'a_s (3.11)

where

S _ g-|

0
2

u(_#+ _ + _)._ + (u/3)(_.u_+ _v_ + _zw_)_,
2u(_: + _ + _:)v_+ (u/3)(_.u_+ _,_ + _,w_)_
2u(_ + _ + _)w_ + (u/3)(_,_ + _,_ + _,w_)_,
2 V2{(_#+ _ + _)10.su(__+ + w_)¢

+ uPr-'('_ - 1)-'(a2)_] 4- (U/3)(f_u + fyv + q_w)

x (f,u_. + _'uv._+ _'zw_)}

(3.12)

It should be emphasized that the thin-layer approximation is valid only for high

Reynolds number flows. Also, very large turbulent eddy viscosities invalidate the
model.

3.3 Numerical Method

The finite-difference schemes used are the implicit approximate factorization

algorithm in delta form by Beam and Warming [63] and a diagonal implicit

algorithm by Pulliam and Chaussee [64]. Implicit methods are chosen to avoid

the time-step restriction when small grid spacing is used. When spatial resolution
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of large gradientssuchasthat associatedwith shockwavesor viscouseffectsare
needed,highly refinedgrids are required. Theserequirementsyield stiff problems
which in turn restrict the time step to very small values. Implicit methods are
useful in avoidingsuch,stiffness,and largetime stepscomparedto thoseof explicit
schemescan be usedwithout degrading accuracy.

3.3.1 Beam-Warming Block ADI Algorithm

The basic Beam-Warmingalgorithm is first- or second-orderaccurate in
time and second-or fourth-order accurate in space. The equations are factored
(spatially split) which, for a given time iteration, reducesthe processto three
one-dimensionalproblems. Due to the second-ordercentral-differenceoperators
employed, the algorithm producesblock tridiagonal systemsfor eachspatial di-
mension. The stability and accuracyof the numerical algorithm is describedby
Beamand Warming [63]. According to the linear analysis, the numerical scheme
is unconditionally stable in two dimensionsbut in actual practice time step lim-
its are encounteredbecauseof the nonlinear nature of the equations. However,
this limitation is much lessstringent than comparableexplicit schemes.In three
dimensionsthe algorithm is unconditionally unstable, but stability is maintained
by the addition of artificial dissipation terms.

The finite-differencealgorithm due to Beamand Warming applied to (3.11)
results in the following approximate factorization:

(I + hS,_A '_ + D_2))(I + h5,[3 '_ + D(2)) x

(I + hS_Cn-hRe-16_S--']Vl'_J + D_Z))AQ '_=/_n (3.13)

where 6 is the central-difference operator and A and V are forward and backward-

difference operators, e.g.

AdO + ¢)- (3.14)

Indices denoting spatial location are suppressed and h = Ar corresponds to first-

order time-accurate Euler Implicit and h = AT/2 to second-order time-accurate

Trapezoidal Rule. D_Z),D (2) and D_ 2) are the implicit and D_ 4) is the explicit

smoothing operator which will be explained later, in Section (3.4).

The Jacobian matrices A_, /_'_ and (_ are obtained by linearizing the flux
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vectors /_'_, F_ and (_n in time such that

_.+1 = _ + _.(0.+1 _ Q,,)+ OCAT2)

._.+, = _. + h.(Q.+l _ Q.) + o(A_) (3.15)
e "+' = e" + e"(O "+' - Q") + o(A_)

where indices denoting spatial location are suppressed again and

a_ ak a_
_=-=, h=---:, _=-=. (3.16)

aQ aQ aQ

are the flux jacobian matrices. These flux jacobians and the viscous coefficient

matrix h_/, which comes from the time linearization of the viscous vector _n+l,

are documented in Appendix A.

3.3.2 Pulliam-Chaussee Diagonal ADI Algorithm

Block tridiagonal-matrix inversions constitute the major portion of numeri-

cal work associated with the standard Beam-Warming algorithm. Equations (3.6)

are a coupled set of 5 equations and thereby produce a (5 × 5) block-tridiagonal

structure for the implicit operators of Eqs. (3.13). The diagonal version of the

standard algorithm due to Pulliam and Chaussee [64] overcomes this difficulty.

In this algorithm, rather than inverting block-tridiagonal matrices in each direc-

tion, scalar pentadiagonal matrices are inverted. This is computationally more
efficient.

The Jacobian matrices, ,4, /_ and C have a set of eigenvalues and a complete

set of distinct eigenvectors. Similarity transformations can be used to diagonalize
_i, _ and _,

= T_A_T_ 1, YB = T,A,T_ 1, C = T_),_T#-'.

where

is = DlV, V,V,V +c(5_ + 5_ + _2)1/2, U-c(_ 2 + _2 + _2)1/2]

___ 2 2 2 1/2]]% DIV, V,V,V +c(_+%+_#)l/2,V-c(,_+_u* nz)

i_ = D[W,W,W,W + c(g_ + _ + _)1/2,W - c(g_ + _ + _2z)'/2 ]

where c is the speed of sound (c 2 = "/p/p), and for example/_ reads as

/_=

"U 0 0 0 0

0 U 0 0 0

0 0 U 0 0

0 0 0 U + c(_ 2 + _ q- _2)1/2 0

o o o o u- c(_ + _ + _z_)l/2

(3.17)

(3.18)

(3.19)
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The similarity transformation matrices T_, T_, T_ and their inverse matrices

are given in Appendix B. Relations exist between T_, T_, and T_ of the form

]V = T['T,, ,]Q-l: T_IT_, p : T_-lT;, ,p-1 T_-lTn (3.20)

where

Tk- 1T/=

?Y/1 m2 _'/3 --#m4 #m4

-rrt 2 ml m4 //,/7/3 --/zm 3

-rrt 3 --m 4 ml --#m2 #m2

I_m4 -txm3 #m2 #2(1 + ml) #2(1 - rni)

-#rn4 ,m s -#rn2 #2(1 - Tr/1) #2(1 -_- 7T/'l)

(3.21)

rrt2 = [¢z[y -- kul_, rn4 = ky[z - kzly, ,= l/v .

After applying the similarity transformations of (3.17) and identities (3.20) in

Eq.(3.13) and exchanging the smoothing operators with new ones, the diagonal

form of the standard algorithm reads

T,_(I + hg_A_ - hD_le)N(I + h6,]_, - hD, ln)x
(3.22)

P(1 + h6¢h_ - hD, I_)T('AQ '_ = R '_

The spatial accuracy of the standard and diagonalized algorithms for steady-state

problems (i.e. A(_ _ _ 0 as n _ co) is determined by the type of differencing in

forming R ". Since the modification that produces the diagonal algorithm does

not effect /_, both schemes will have the same steady-state solution assuming

that the steady-state solution is independent of the convergence path; i.e., that

the steady state is unique. For constant coefficient matrices A, /_ and (7, the

diagonal algorithm reduces to the standard algorithm because the eigenvector

matrices are also constant. Therefore, the linear stability analysis of Beam and

Warming [63] also holds for the diagonal algorithm.

By numerical experimentation with the TNS code using both schemes, it was

found that the diagonal algorithm performs much better in terms of convergence

rates (see Flores [65]). To further enhance the convergence rate, two spatially

varying Ar schemes have been used.

AT -- Atref

and

AT- At_f (3.23)
I+V_
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where J is the Jacobian of the coordinate transformation, )_rnax is the maximum

eigenvalue of the flux jacobians _4, /_ and (_, and /_treI is a reference time step.

The latter time stepping scheme proved to be better and was used throughout
this study.

3.4 Boundary Conditions

Since the finite-difference scheme used in the TNS code is implicit, it might

be expected that the boundary conditions would also be implicit. But the imple-

mentation of the implicit boundary conditions necessitates a modification of the

inversion matrices which is not very practical. Moreover, past experience is such

that explicit boundary conditions have been successfully employed in conjunc-

tion with the implicit codes. Also, explicit treatment of the boundaries leads to

a simple and flexible scheme. Boundary conditions become a modular element

that can be put in or pulled out of a computer program without touching the

heart of the implicit code.

Unknown values of (_ on the boundaries are updated explicitly, and this

leads to a zeroth-order time extrapolation. The space extrapolations are either

zeroth order or first order according to the physical and geometric constraints.

Since in the TNS code a zonal approach is employed, there are two types of

boundaries at which conditions must be specified: 1) the physical boundaries

such as inflow, outflow, and body surface, and, 2) the zonal boundaries where

"zones" are patched together. Treatment of zonal boundaries was presented in

Chapter 2.

At the farfield boundaries, free-stream values are specified. This is shown

in Fig. 12. At the upper boundary DC, lower boundary AB, side boundary EF,

and inflow boundary AD, the conditions are free-stream, i.e., Q = _)oo. The con-

ditions at the outflow boundary are found by a zeroth-order extrapolation from

the last plane such that QJMAX : QJMAX-I. The symmetry plane bound-

ary conditions are more complicated: Here a zeroth-order space extrapolation is

used for the density. A first-order extrapolation is employed for the x-direction

Cartesian velocity component u and z-direction Cartesian velocity component

w, while the spanwise y-direction Cartesian velocity component v is set equal

to zero to force symmetry. Pressure is also found by a first-order extrapolation

and the total energy is computed using Eq. (3.4). At solid surfaces, the no-slip

boundary condition is employed for the three velocity components. Surface pres-

sure is found by using the boundary layer approximation Op/On ,_ 0 such that

pl = P2 , where Pl is the static pressure on the body surface, and p_ is the static

pressure on the first computational surface off the body. The surface density is

found from an adiabatic wall assumption which yields Pl = P2. Total energy is

computed using Eq. (3.4).
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3.5 Artificial Dissipation Models

The numericalsolution of the Euler/Navier-Stokesequationsfor flows involv-
ing capturedshockwavesnecessitatesthe useof numerical or artificial dissipation
either by using a schemewhich is inherently dissipative or by using a nondissipa-
tire schemewith speciallydesigneddissipativeterms. The former classof schemes
employsomeform of upwind differencing under the assumptionsof characteristic
theory and wavepropagation. The schemesdue to Stegerand Warming [67],Roe
[681,Van Leer [69],Osherand Chakravarty [70] and Harten's TVD methods [71]
all fall in this category. In this classof schemes,the dissipation is automatically
includedwithout usercontrol. The basic ARC3D algorithm [62]usedin the TNS
codeis of the secondvariety and consistsof a centrally-differencednondissipative
schemewith user-controlledsmoothing terms. The artificial dissipation is added
for two reasons;first to control the odd-evendecoupling of grid points typical of
central differencing,and secondto control strong nonlinear effectssuchasshocks.

It can be shownthat upwind schemesare equivalent to central difference
schemeswith addeddissipation. Pulliam[72] demonstratesthat adding a fourth-
differencedissipation to a central-differenceschemeproducesthe equivalent of a
second-orderupwind scheme,whereasthe useof a second-differencedissipation
term producesa first-order upwind equivalent. There are different dissipation
models utilized in the block and diagonal algorithms described earlier in Sec.
(3.3).

The block algorithm which wasgiven in Eq. (3.12)usesa constant coefficient
dissipation model. In this approach,an explicit fourth-difference dissipation

(3.24)

is addedto the right-hand side of the equation and an implicit second-difference
dissipation

D_ 2) = --eiJ-1AkVkJ, k = _,r/,_ (3.25)

is inserted into the respective implicit block operators. Based on linear stabil-

ity theory, the use of the explicit dissipation alone produces an explicit stability

bound. If the second-difference implicit dissipation is added, the algorithm be-

comes unconditionally stable if ei is sufficiently large (cf. Ref. [28]). The proce-

dure is to set ee = Ar and ei = 2ee which results in a consistent definition of ee

such that as the time step increases, the amount of artificial dissipation added

relative to the spatial derivatives of convection and diffusion remains constant.

This is because all of the convection and diffusion terms in the approximate fac-

torization algorithm of the Eq. (3.13) are factored by the time step At. Instead

of second-difference implicit dissipation, using fourth-difference implicit dissi-

pation would improve convergence. However, this would require the inversion
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of extremely expensiveblock pentadiagonalmatrices rather than the relatively
simple block tridiagonal matrices [72],[73].

The diagonal version of the implicit approximate factorization algorithm

due to Pulliam and Chaussee, which was described in Sec. (3.3), substantially

reduces this computational cost. The more appropriate fourth-difference dissipa-

tion terms can be added, and only require the inversion of scalar pentadiagonal

matrices as opposed to block pentadiagonal matrices in the block algorithm.

The diagonal algorithm was given by Eq. (3.22). The combination nonlinear

dissipation operators are included as follows:

= j-1 -I , (2) ^ _ e(4) ^ v, A_)J (3.26)Dil_ V_(OJ+l,k, l j+l,k,l + aJ,k,lJj,k,l)[ej,k,lL-_ j,k,lZ_v(

The terms for Dil,7 and Dil¢ have a similar form. The same dissipation model

has been implemented in the right-hand explicit side of the algorithm. Hence the

constant-coefficient fourth-difference dissipation operator D (4) in Eq. (3.13) is

replaced by a combination nonlinear dissipation operator

= j-, -, , (2) A .(4) ^ w A_)J (3.27)Del,, j+l,k,t + aj,k,lJj,k,t) [¢'j,k,ILA_ tj',k,lL-Z_v _

The dissipation operators defined by Eq. (3.24) and (3.25) include the metric

Jacobian J so that they act upon the unscaled Q and not on Q. Hence the

dissipation is not directly influenced by the grid distribution because smooth

functions of Q may occur in regions of rapid mesh variation. This form of

smoothing operator is inspired by the recent work applying flux limiters to up-

wind schemes and TVD concepts which suggest that the best approach for an

upwind algorithm is to use locally first-order upwind differences at the shock

and second-order elsewhere[72]. This is accomplished by using switch operators

e(2) and ,(4) which govern the type of smoothing, e.g. second-difference smooth-
j,k "-j,k

ing near shocks and fourth-difference smoothing elsewhere. The term aj,k is a
spectral radius scaling which in three dimensions is defined as

' ' V x y

+ IV[ + av/rl_ + r/_ + r/z2

+ Iwt+ + +

(3.28)

and is a sum of the spectral radii of the flux jacobians A, /3 and C. The interested

reader is referred to Pulliam [72] for a good review of this subject. The effect of

different smoothing models in the actual computations for the TNS code will be

presented in Section (4.3).
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3.6 Turbulence Model

Solving turbulent flows numerically is a very difficult task due to the extreme

time and space scales associated with turbulent motion. Hence, the main method

of approach in Computational Fluid Mechanics and Heat Transfer for solving

turbulent flows is through the Reynolds averaged Navier-Stokes equations. Time

or "Reynolds" averaging the equations of motion give rise to new terms which can

be interpreted as "apparent" stress gradients and heat flux quantities associated

with the turbulent motion. The apparent turbulent stresses in compressible flow

can be written as [74]

(T,j) urb: --p (3.29)

and the apparent turbulent heat flux components as

0

-(V • q)turb -- Oxj(pcpT'u_) (3.30)

In order to predict turbulent flows by applying finite-difference methods to

the Reynolds equations, it is necessary to make assumptions for the terms in

Eqs. (3.29) and (3.30). Boussinesq (1877) suggested that the apparent shearing

stresses might be related to the rate of mean strain through an apparent turbulent

or "eddy" viscosity given in incompressible flow by

, i (Oui auj_ (3.31)
--PUiU 3 . #T\Ox3 + OXi]

Closure for the Reynolds heat flux-term, pcr, T'u j is treated in algebraic models

by a form of Reynolds analogy. The Reynolds analogy is based on the similar-

ity between the transport of heat and momentum and applied to the apparent

turbulent conductivity in the assumed Boussinesq form

OT (3.32)pcpT'u;= -kT 0x-- 

Experiments reveal that the ratio of the diffusivities for the turbulent transport

of heat and momentum which is called the turbulent Prandtl number, PrT =

#TCp/kT , is a well-behaved function across the flow and in algebraic models is

generally taken to be 0.9. Using the turbulent Prandtl number, the turbulent

heat flux is related to the turbulent viscosity and mean flow variables as

-pcpT'u'j- Cp#T OT
Pr T Oxj

(3.33)
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Hence, in large scale Navier-Stokes computations an accurate and compu-

tationally efficient method of computing eddy coefficients is needed. Since the

algebraic eddy viscosity models proved to be fairly accurate and computationally

efficient, the Baldwin-Lomax algebraic eddy viscosity model [29] is utilized here.

In the Baldwin-Lomax model the effects of turbulence are simulated by replac-

ing the molecular coefficient of viscosity /ZM with the effective viscosity #M + #T

in the stress terms of the laminar Navier-Stokes equations. In heat flux terms

k/cp = #/Pr is replaced by #/Pr _ I_T/Pr T.

The Baldwin-Lomax model is a two-layer algebraic model in which #T is

given by

(3.34)

where y is the normal distance from the wall and yc_o_,_oo_ is the smallest value of

y at which values from the inner and outer formulas are equal. The eddy viscosity

coefficient in the inner layer is based on the Prandtl mixing-length theory

(3.35)

The parameter _ is the mixing length corrected with the Van Driest damping

factor to account for the laminar sublayer

= ky [1 - exp(-y +/A+)] (3.36)

where k =--0.4, A + = 26, and [w[ is the magnitude of the vorticity given by

I_1 = V/("_ - "=)_+ (v_ - _)_ + (w=- ,_)_ (3.37)

and

_+ 0_y _ pvg_y (3.38)
#w #w

The eddy viscosity coefficient in the outer layer is based on the distribution of

vorticity which is used to determine the length scale and is given by

(#T)cluter ---- K Cop p FWAKEFKLEB(Y) (3.39)

where K == 0.0168 is the Clauser constant and Ccp = 1.6 is an additional

constant. FWAKE is found via

FW AK E : rain or
2

CwK ym_UDIF/Fm_=

(3.40)
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where Cw_: = 0.25 and

= + + + + (3.41)

In Eq. (3.41) the second term is taken to be zero (except in wakes). The quan-

tities Yma_ and Fm_ are determined from the function

F(y) : y lw [[1 - exp(-y + /A+)] (3.42)

In wakes the exponential term is set equal to zero. The quantity Fm_ is the

maximum value of F(y) that occurs in the profile and ym_ is the value of y at

which Fr_ occurs. The function FKLEB is the Klebanoff intermittency factor

given by

= -- (3.43)
YMAX

and CKLEB = 0.3.

Although not seen explicitly, the Reynolds number enters into the compu-

tation of eddy viscosity through the computation of y+. When the variables in

Eq. (3.38) are nondimensionalized, the following expression is obtained:

(3.44)

In high Reynolds number flows, as Re --, oe, the length scales l and F(y) in the

inner and outer layers go to zero, which result in vanishing values of #T. For

more discussion on the Baldwin-Lomax turbulence model, the reader is referred

to the original paper [29].

3.7 Computational Aspects of the Zonal Algorithm

So far the building blocks of the TNS program were presented: namely,

the zonal algorithm, related data management and the numerical methods and

flow models. It is very important to explore the characteristics of this code if

it is intended to be used in routine flow simulations. The speed, convergence

characteristics, efficiency and reliability of the code must be assessed.

The convergence rate of the diagonal version of the code (see Sec. 3.3.2)

versus the block (standard) version (see Sec. 3.3.1) is shown in Fig. 13 (see Ref.

[65]). The geometry used in this simulation was a NACA 0012 wing (see Fig. 9).

The free-stream flow conditions were Moo = 0.826, a = 2 ° with a Reynolds

number based on chord of 8 million. This is a moderately difficult case involving

a strong shock with a moderate amount of separation. In Fig. 13, the abscissa
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denotesthe number of iterations for the algorithm, and the ordinate denotesthe
L2-norm of the residual. The time step usedin the block versionwasAt = 0.004,
where a unit time interval denotesthe time required by a particle moving at the
free-stream speed of sound to travel one chord length. This was the largest
time-step possiblewhile still maintaining stability of the code.

The diagonal version used a variable time-step (see Eq. 3.23) and thus
receivedconvergenceaccelererationfrom this aspect. However,despite this, the
main speed-upassociatedwith the diagonal algorithm is not due to the variable
time-stepping alone,but the variabletime-step coupled with the correct implicit
treatment of the numerical dissipation terms. Pulliam and Steger [73] reported
that the variable time-step had often worked poorly in viscous flow until the
second-orderimplicit dissipation terms werereplaced by the fourth-order terms
which are consistent with the fourth-order explicit dissipation of the right-hand
side of the algorithm (seeEqs. 3.26 and 3.27). The same replacement is, of
course, possible in the block algorithm, but would necessitatethe inversion of
expensiveblock pentadiagonalmatrices.

The slowrate of convergenceassociatedwith the block schemeseemsto occur
in the outer zones.The viscous-zoneblock-schemeresidual drops rapidly during
the first 1000iterations but then flattens out. At 5000 iterations, the residuals
associatedwith all zoneshavedroppedby about oneto two ordersof magnitude.
In contrast, the convergencerate of the diagonal schemedrops rapidly in all
zones.A three-order of magnitude drop in the L2-norm for a 150,000grid point
meshoccurs in 500 iterations which costs 2450secondsof CPU time. This is
equivalent to 4.9 secondsof CPU time per iteration and 3 x 10-5 secondsof
CPU time per grid point per iteration. The convergencerate of the diagonal
algorithm is nearly 40 times that of the original block algorithm. This is due to

the proper linearization of the dissipation terms and variable time stepping as

stated earlier, coupled with the decrease in arithmetic operation count owing to
the diagonal algorithm.

The convergence characteristics of the algorithms as discussed above and

other computational aspects of the TNS code were thoroughly explored by Flores

[65]. It was concluded that: 1) although convergence rates are vastly different

for different algorithms, the solution at steady state is not affected, 2) the use
of explicit boundary conditions at zonal boundaries has no detrimental effect

on the convergence characteristics of the algorithms, 3) there was no noticeable

improvement in the convergence rate as a result of changing the extent of overlap

between zones, and 4) use of different CFL values in different zones increases the

convergence rate by 10-20%.

Data management of large application codes is an important issue which
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must be handledcarefully. Memory, speedand I/O(input/output) requirements
of the TNS code arequite substantial. The key element for handling the memory
and I/O requirementsof the TNS code is the SSD (Solid State Device) of the
NASA Ames Cray X-MP (seeSec. 2.4). The SSD has 16 million 64-bit words
of memory. It will be instructive to give somestatistics about how this code
performs in actual situations, and in particular, how the data managementof
the metrics wasachieved.

To exploit the ADI character of the flow solver algorithm, which necessitates
implicit sweepsin all three directions, the metrics are transferred from SSDinto
main memorywith three different orientations: x-y planes, x-z planes, and y-z

planes. Hence, there are three different copies of the metrics stored on the SSD

corresponding to the three different orientations, which is not a problem because

of the ample storage space in the SSD. However, the number of grid points for

an adequate grid resolution is still limited by the capacity of the main memory

(1 million 64-bit words on Cray X-MP). Each of the metric arrays is required in

main memory several times for each grid zone during each iteration. This places

extreme demands on I/O requirements. Nevertheless, the SSD handles these

I/O requirements without a problem. The computational statistics displayed in

Table 2 demonstrate this for two cases (Moo - 0.80 and 0.95 and Re = 8 x l0 T,

= 5°). The grid used for both calculations is similar to that presented in

Fig. 8 and consists of four zones with a total of 166,621 grid points. As seen

from Table 2, the higher Mach number case converges more slowly than the

lower Mach number case. This is not surprising, since the Moo = 0.80 case is

only moderately separated and the Moo = 0.95 case is massively separated. To

advance a typical interior grid point in the TNS program one time level requires

approximately 2030 floating point operations. Thus, for the cases displayed in

Table 2, the TNS program execution rate on the Cray X-MP computer is about

63 MFLOPS (million floating point operations per second).

From the statistics in Table 2, the efficiency level associated with the SSD

I/O is quantitatively established. During the Moo = 0.95 case, the program

transfers alm6st 24 billion 64-bit words between the SSD and main memory

using about a quarter of a million read/write requests. The I/O time charge for

this case is just over two minutes. The estimated ]/O time charge for this case,

assuming disk is used to replace the SSD, is over 24 hours. (Because the I/O

utilized in the TNS program is asynchronous, these I/O time charges represent

only that portion of the I/O time that was not "covered up" by the CPU during

execution.) For a detailed survey of the computational aspects of the TNS code,

please refer to Ref. I75].
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Table 2. Computational Statistics from the TNS Program
(NACA 0012wing, Rec = 8 x 107 , AR = 3.0, TR = 1.0, A = 20 ° )

Quantity Moo = 0.80 Moo = 0.95

Iterations* 825

CPU Time (Hrs) 1.25

Read/Write Requests (Memory/SSD) 110550

64-Bit Words Transferred (MWDS) 10391

SSD I/O Time (Sec) 61.5

1890

2.82

253260

23806

140.8

Estimated Disk I/O Time (Hrs) 10.7 24.4

(If disk had been used in place of SSD)

*Avg residual reduced three orders of magnitude (all grid zones).
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CHAPTER 4

SIMULATION OF WING FLOW FIELDS

4.1 Introduction

Understanding the nature of separated flows is important for an aircraft

designer. If the aerodynamic design of a flight vehicle with flow separation is to be

successful over the full range of flight conditions, the vehicle must be controllable

at all times and possess no rapid changes in force and moment characteristics.

Lifting surfaces such as wings, canards, strakes, etc., play an important role in

the design process. Accounting for separated flows about these surfaces is one

of the most crucial tasks of the aerodynamic design. Designers either want to

reduce the adverse effects of separation, or exploit separation for useful purposes.

The latter, for instance, is the case for a rolled-up vortex sheet from the sharp

leading edge of a delta wing or a strake of a fighter aircraft, in which case the

vortex provides so-called "nonlinear lift."

Our present understanding of three-dimensional separation about wings

comes principally from flow visualization experiments with surface-oil techniques

in wind tunnels, smoke tunnels, and dye flow in water tunnels. However, there

have also been some attempts to compute separated flows on wings in recent

years. Numerical simulations of the leading edge vortex phenomenon associated

with a delta wing have been made using potential flow procedures such as panel

methods or vortex lattice methods [76],[77]. Other researchers have used the

Suler equations to solve the same problem [78],[79],180],[81]. For a discussion

about the prediction of separation, which is a viscous phenomenon, using the

Euler equations, see Ref. [82].

Another technique used in the computation of separated flows is based on

viscous-inviscid interaction methods (see Sec. 1.2). These methods are quite

appropriate for computing mild separations but, at present, tend to break down

for large streamwise separations. Some progress has been made on computing

turbulent flows over wings primarily using integral boundary layer schemes, but

these schemes cannot easily compute separated flows [42],[43],[44].

Because of the shortcomings of the methods described in the previous para-

graph, the Navier-Stokes equations seem to be the proper model equations for

computing massively separated flows on wings [40]. This line of research is quite

recent, with only a few publications on the subject. The computation of the
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supersonicflow overa blunt delta wing by Vigneron et al. [83i, the leading-edge
separation vortex over a delta wing at high angleof attack by Fujii and Kutler
[39], and the simulation of a tip vortex off a low-aspect-ratio wing at a transonic

speed by Mansour I34] are a few examples. Also very recently, transonic wing

solutions have emerged due to Agarwal and Deese I37}, Vadyak [841 and Hoist et

al. [451.

In this chapter, the computational aspects of the TNS zonal algorithm are

presented, and then the mathematical and topological considerations of separated

flows will be discussed to better understand them. After this, the impact of the

artificial dissipation and turbulence models on separated flow will be demon-

strated. Finally, the simulation of two low-aspect-ratio wings will be presented

and comparisons will be made where data are present.

4.2 Mathematical and Topological Considerations

4.2.1 Background

The character of a flow near a surface, to a large extent, can be inferred

from the surface pattern or "skin-friction lines" which are the lines everywhere

parallel to the wall shear stress vectors. The pattern of skin friction lines can

often be approximately determined by the experimental oil-flow technique 185].

However, the thickness of the oil film plays an important role in the appearance

of the resulting oil-flow pattern. If the film is thick and accumulates in certain

regions of the surface, it may lead to misconceptions (private communication

with Dean Chapman, 1984).

Although the definition of separation and reattachment is well established

in two-dimensional steady flows by the existence of a reverse fow, a straight-

forward extrapolation of two-dimensional concepts to three-dimensional flows is

not possible. In three-dimensions, the meaning of the term "reverse" becomes

ambigious. Our present, understanding of three-dimensional separation stems

essentially from flow-visualization experiments. If, for instance, a surface oil-

flow technique is used, Tobak and Peake 186] indicate that the convergence of

oil-streaks onto a particular line is a necessary condition for three-dimensional

separation. But, whether this is also a sufficient condition is a topic of current

debate.

Maskell [87] discussed the global structure of three-dimensional flows in qual-

itative terms, calling the pattern of limiting streamlines (the streamlines very

close to the surface which lie closely along the skin-friction lines) the "skeleton"

of the entire flow field. A precise mathematical framework to conceptualize the

pattern of "limiting streamlines" was proposed by Legendre [88} in which the

48



limiting streamlines were consideredto possessthe properties of a continuous
vector field. Oneprincipal property is that only one limiting streamline canpass
through a regular (that is, nonsingular) point in the flow field. On the basis
of this hypothesis, the elementarysingular points of the field can be categorized
mathematically (seeSec.4.2.2). Then, the types of singular points, their number
and tile rules governingthe relationsbetween them can be said to characterize
the pattern.

In this context, three-dimensionalseparation has been definedby the con-
vergenceof skin-friction lines onto a particular skin-friction line that originates
from a singular point of particular type, the saddle point [85],[86]. However,
this may not be the only possibility. Under given circumstances, it appears
that a separation line may alsoemanate from a nodal-type singular point [86].
The issue wasclarified more conciselyby Lighthill [85] by tying the postulate
of a continuous vector field to the pattern of skin-friction lines on the three-
dimensionalbody rather than to the limiting streamlinesjust abovethe surface.
There are two advantagesto working with the skin-friction lines: 1) they are
defineduniquely everywhereon the surface,even in the vicinity of lines of sep-
aration, which are themselvesskin-friction lines, and 2) with skin-friction lines
being defined uniquely everywhereon the surface, the pattern of skin-friction
lines can be viewedasa continuousvector field.

4.2.2 Mathematical Foundations for the Skin-Friction Field

In order to examine the conditions for separation and behaviour of critical

points, it is necessary to consider the wall shear stress field. Skin-friction lines are

defined as the integral curves of the wall shear stress vector exerted by the fluid on

the wall. If at any point the wall shear stress vanishes, the field possesses a saddle

or a nodal point, at which the skin-friction lines' directions are indeterminate.

The "phase-plane" and "phase-space" methods of exploring the properties of

solutions of ordinary differential equations have proved to be extremely successful

in the field of nonlinear dynamical systems. Oswatitsch [89], and Lighthill [85]

examined viscous flow patterns close to a rigid boundary and classified certain

classical points which can occur. They used a mathematics which is equivalent

to the phase-plane trajectory analysis. Also Perry and Fairlie [90] and Hornung

and Perry I91] applied these techniques to fluid flow problems. The following

analysis outlines the mathematical procedure for the topography of skin-friction

lines and critical points. In the analysis, cartesian coordinates are assumed for

demonstration purposes, however the same conclusions could be drawn if the

curvilinear coordinates were used.
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The system of equationsfor particle paths in a steady flow is given by

dx

d--[ = u(x,y,z)

ay = v(x, y, z)
dt

dz
-- = w(z,y,z)
dt

(4.1)

where x,y, and z are Cartesian coordinates and u, v, and w are the Cartesian

velocity components along x, y, and z respectively (see Fig. 14). The skin-friction

lines, or limiting streamlines, are obtained by exploring the limiting behavior of

Eqs. (4.1). But because of the no-slip boundary condition at the wall, Eqs. (4.1)

are trivial (i.e. u = v = w = 0, as z _ 0). At this point, it is helpful to introduce

a pseduo-time dr such as

dT= Z dt (4.2)

Rewriting, Eqs. (4.1) yield
dx u

"is --

dT z

dy v
_]--

dT Z

dz w

dT z

(4.3)

It is necessary to analyze the limiting behavior of the shear-stress tensor given in

Eq. (3.3). At the surface, the following conditions for the velocity components

and their derivatives hold:

U----V-=w=-O

(4.4)
tt x ---- Uy -_ V x ---- Yy z Wx _ Wy _ 0

but from the continuity equation, wz = 0 also. Hence Eqs. (3.3) reduce to

Txz: -_- Tyy z Tz z _ 7"xy

Ou

Txz : # Oz

Ov

7yz z # c_z

=0

(4.5)

Taking the limits as z ---, 0 for the last two of the preceeding equations yields

It Txz

- - I(z,y)
z #

v _ r_z - g(z, y)
z #

(4.6)
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or
u T w

- (4.7)
z /z

in which u = (u,v) T, T w = (Txz, Tyz) T where the superscript T denotes the

transpose of a matrix, and f(x,y) and g(x,y) are nonlinear functions.

It is assumed that, for steady flow of an incompressible Newtonian fluid with

constant viscosity at finite Reynolds number over a smooth continuous wall, the

velocity and pressure are regular, so that local solutions can be written as Taylor

series expansions in the space coordinates. The mathematical support for this

assumption is discussed by Ladyzhenskaya [92]. Eq. (4.7) reveals that the vector

quantity u/z is equal to rw/#, and the vector field u/z has the same integral

curves as the wall shear stress; i.e., the skin-friction lines. When u/z is expanded

into a Taylor series about the critical point, and only the lowest order terms are

retained, the following linear system of first-order ordinary differential equations
is obtained:

[: :][:]
or

= F.x (4.9)

The matrix F of Eq. (4.9) has eigenvalues A1 and A2 which may in general be

real or complex. The corresponding eigenvector slopes are

ml = (A, - a)l'b= cl(A, - d)
m2 = - a)lb : c1(),2- d)

(4.10)

which, for the case of A1 and A2 real, may be shown to correspond to the slopes

of certain trajectories which emanate from the critical points.

There is just one skin-friction line through each point on a surface, except for

a point of separation or attachment, where rw = 0. These points are the singular

points of the differential equations governing the topography of the skin-friction

lines. Such singular points are classified (see Kaplan [93]) depending on the

values of the following quantities:

p = -(a + d) = -traceF

q = (ad- bc) = det F
(4.11)

and
1

•'_ 1,2 : --7[P :[:::: (p2 __ 4q)'/21 (4.12)

The classification of possible critical points is shown in Fig. 15 from Ref. [90]. A

singular point where q < 0 is a "saddle point"; a point where q > 0, however, is
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a "nodal point." A nodal point (Fig. 15a) is a point where all of the skin-friction
lines except one (labeled AA in Fig. 15) are tangential to a single line BB. A
focus (Fig. 15b) differs from a nodal point in that it has no common tangent
line. An infinite number of lines spiral around the singular point, either away
from it (a focus of attachment) or into it (a focus of separation). At a saddle
point (Fig. 15c),only two particular lines, CC and DD, pass through the singular

point. The flow directions on opposing sides of the singular point are inward on

one particular line and outward on the other line. All of the other lines pass

by the singular point in directions consistent with the directions of the adjacent

particular lines. Critical points corresponding to values of p and q along the axes

(p = 0 and/or q = 0) and on the parabola p = 4 q2 are "degenerate" forms.

4.2.3 Topography of Skin Friction Lines

Singular points have certain characteristics that largely determine the dis-

tribution of skin-friction lines on tile surface. The nodal point of attachment is

typically a stagnation point on the forward face of the body, where the free-stream

attaches itself to the surface. Hence the nodal point of attachment behaves like

a source from which the skin-friction lines issue and circumscribe the body. The

nodal point of separation, however, behaves like a sink where the skin-friction

lines on the body surface terminate. In other words, this is the rear stagnation

point of the body. The saddle point acts typically to divide the skin-friction

lines issuing from these nodes. The total number of singular points for a possible

pattern on a smooth surface is subject to a topological rule that the number of

nodal points must exceed the number of saddle points by 2 (see Kaplan [93]). A

physical explanation for this is due to Lighthill I85]: since there are infinite num-

ber of skin-friction lines on the surface, and they must begin and end somewhere,

there is at least one nodal point of attachment and one nodal point of separation.

I[ there are two nodal points of attachment, however, the skin-friction lines from

each node must somewhere run into each other; this necessitates an introduction

of a saddle point in between them.

Figure 16 shows such a combination of two nodal points of attachment and

one saddle point of separation. If there are n nodal points of attachment, there

will be (n - 1) saddle points accordingly. Hence the whole combination is equiv-

alent to a single node of attachment which behaves like a "source" as explained

before. Similarly, m nodal points of separation and (m - 1) saddle points behave

like a "sink" into which the skin-friction lines emanating from the "source" van-

ish. Therefore, there are (rn + n) nodal points and (m + n - 2) saddle points, and

the topological law is satisfied. A particular skin-friction line emerging from a

saddle point prevents the lines from the nodal points of attachment from crossing

each other. This particular skin-friction line is called a line of separation. Skin-

friction lines from either side asymptotically converge on the line of separation.
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Hence,it is possible to define the line of separation as a particular skin-friction
line toward which other skin-friction lines converge rapidly (in an asymptotic
manner, but not a cusp-likemanner,c.f. [85],[90]);conversely,a line of reattach-
ment is defined as a particular line from which other skin-friction lines diverge
rapidly. It should be kept in mind that this definition is associatedwith the
necessary condition of the separation. Whether it is also su_cient is a matter of

current debate [86].

In the vicinity of the line of separation, the limiting streamline must leave

the surface. This can be shown as follows: at a very small distance z from the

surface the velocity was found in Eq. (4.7)

U ?'w

z #

Continuity must be satisfied in a streamtube, for which the volume flow rate ._/

is expressed as

_I = zd q --=-const. (4.13)
2

where d is the distance between the streamlines and q -- l u]. From Eq. (4.7)

1
q = - zTw (4.141

#

where rw = Ir_ I. From Eqs. (4.13) and (4.14)

z,_, (dl-w) -'/2 (4.15)

Hence, the height of the limiting streamline z above the surface grows rapidly

as the line of separation is approached. According to Eq. (4.15), the mechanism

which causes the limiting streamlines to leave the surface is twofold: first, the

resultant skin-friction rw becomes vanishingly small near the saddle point, and

second, the distance d between the adjacent limiting streamlines, falls rapidly as

the limiting streamlines converge toward the line of separation.

In the remaining parts of this section, a series of attached and separated

flow computations will be presented. The methodology of studying these flows

will be from three points of view: l) the actual phenomena (i.e., the experi-

mental flow pictures), 2) the "conceptualization" or the "postulation" of these

pictures in light of topological laws and rules, and 3) the computations. In any

kind of interpretation, these three topics must support each other to provide a

plausible explanation. The surface phenomenon is very important because the

three-dimensional flow field above the surface depends on the surface flow. For

instance, three-dimensional stream surfaces emerge from the separation lines,
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whereasrolled-up vortex sheetsemanate from spiral separation nodes, i.e. the
foci on the surface. However, the three-dimensional separation phenomenonis
very complex and a given surfacepattern can produce many three-dimensional
flow patterns dependingupon interpretation. Dallmann I94] explains with exam-
ples that there isno unique relationship betweenthe pattern of wall streamlines
and the flow field abovethe wall. He addsthat topologically different flow fields
may exhibit the sameoil-flow picture.

4.3 Effects of Artificial Dissipation and Turbulence Models

Turbulence and artificial dissipation models play crucial roles in the simu-
lation of separatedflows and shock/boundary layer interactions. Since there is
an intimate relation betweenthe skin friction field and flow separation, correct
computation of boundary layersis very important. In order to assessthe relative
effectsof thesemodelson the boundary layer characteristics,a seriesof test cases
hasbeencomputed for attached and shock-inducedseparatedflows.

4.3.1 Effects of Artificial Dissipation

The impacts of artificial dissipation schemes are firstly investigated for an

attached airfoil flow. The test case consists of a two-dimensional flow around a

NACA 0012 airfoil at Moo = 0.5, Re - 2.89 × 106 and a = 0 °. The TNS program

was run for a very large aspect ratio wing making the flow at the symmetry plane

essentially two-dimensional. The computed and experimental pressure coefficent

distributions are compared in Fig. 17. The experimental data is taken from

Thibert et al. Ref. [95]. The agreement for this admittedly easy case is very

good in terms of pressure.

In Fig. 18, the turbulent boundary layer profiles computed by TNS, using

different smoothing models and algorithms, are compared with those of an an-

other CFD code, called TRIVIA. Ideally, the computed boundary layer profiles

should be compared with the experimental ones. However, this is not an easy

task because of the lack of experimental profile data. An alternative is to com-

pare the computed profiles against those of another "proven" CFD code. For

this purpose, the transonic airfoil interaction code of Steger and Van Dalsem

[96], called "TRIVIA" was chosen. TRIVIA utilizes the same turbulence model

as TNS and proved to be very accurate for a fairly broad range of airfoil flow

conditions.

The y+ values of the first grid points off the surface were about 1 or 2 for

TRIVIA and 2 or 4 for TNS. One remarkable feature of this comparison is that

although all methods give the same C_, distribution, the computed TNS boundary

layer profiles using the diagonal algorithm of Section 3.3.2 are significantly less
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full than either TRIVIA or TNS-block-algorithm boundary layer profiles. The
TNS diagonal algorithm utilizes a nonlinear artificial dissipation model, while
the block algorithm usesa constant coefficient artificial dissipation model. The
discrepancy between the results may be explained as follows: the amount of
artificial dissipation must be largeenoughto keepthe algorithm stable, yet small
enoughnot to excessivelydampthe flow physics. The nonlinear smoothing used
in the diagonalalgorithm wasspecifically designedfor inviscid calculations [97].
Usingthis algorithm in Navier-Stokescalculationsproducestoo much smoothing
in the boundary layer. This is becausethe spectral radius aj,k,l used in Eq.

(3.27) is in the order Af -1, and since the normal grid spacing Af is very small

in the viscous boundary layer, aj,k,l becomes very large. This problem may be

resolved by forcing the artificial viscosity to zero near solid boundaries. The

nonlinear explicit smoothing terms of the diagonal algorithm given by Eq. (3.27)
is modified to

Del_ = Vef(M)(Oj+l,k,lJ_+ll,k,l+vr -1 (2) (4)Zk,tJj,k, )(9,k,zAe-- 5,k,zAeVe/ e)J (4.16)

where

f(M) = I M2,

M,

for attached flows

for separated flows

(4.17)

and M is the local Mach number. The suggested linear and quadratic variations

of Mach number depending upon the type of flow was found experimentally.

However, this reflects the fact that the amount of artificial dissipation in a sep-

arated flow should be larger than its counterpart in an attached flow. This is to

secure the numerical stability of the algorithm. Utilizing this concept proved to

be very helpful, as evidenced in Fig. 19 where the modified dissipation model

results compare favorably with the original TRIVIA results.

Since the modified smoothing algorithm changes the boundary layer, it is

expected that the skin-friction field, and consequently the separation character-

istics, will also change. Therefore, another test case was set up to simulate a

separated flow. The impact of the artificial dissipation, as well as the impact

of the turbulence model, will be investigated on this flow. This case involves

a transonic flow field about a NACA 0012 section wing with an aspect ratio of

3.0, a taper ratio of 1.0, 20 ° of sweep, a Reynolds number based on chord of 8

million, a free-stream Mach number of 0.826, and an angle of attack of 2 °. The

solid wind tunnel walls, which are modeled in this calculation (see Fig. 8), are

slightly less than 2 chords above and below the wing. This case corresponds to

the experimental work of Lockman and Seegmiller [61], and a comparison of the

numerical results with this experiment follows.
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The surface pressure coefficent distributions at three selected spanwise lo-

cations are compared in Fig. 20. It is seen that the free-air shock position is in

error by approximately 10% of chord, and inclusion of wind tunnel wall effects

has shifted the shock downstream, in good agreement with the experiment. Also,

the pressure plateau downstream of the shock, which signifies the shock induced

separation, was not reproduced due to the turbulence model. Note also that

general agreement between the wind tunnel simulation and experiment is better

inboard of mid-semispan than it is outboard.

The emphasis of this work is on flow separation. In Fig. 21, an oil flow

photograph taken from the experiment of Lockman and Seegmiller [61] shows

the complexity of the phenomenon. In order to analyze and comprehend the

separated flows, postulation of the skin friction lines is very helpful. The reader

is reminded that Maskell [87] called the skin-friction lines the "skeleton" of the

entire flow field (see See. 4.2.1). The author's depiction of the skin friction lines

for the flow of Fig. 21 is presented in Fig. 22 to facilitate a possible correlation

between the oil flow photograph and the numerical simulations. The oil-flow

photograph displays a very interesting skin-friction map typical of transonic sep-

arated flows. A strong swept shock wave extends almost over the entire span of

the wing, and induces flow separation over two-thirds of the span. The swept

shock wave is especially strong in the outer one-half of the span and causes a

"mushroom-type" separation zone. In this zone, two counter-rotating vortices

are separated by a saddle point, as necessitated by the rules for skin-friction line

topography (see See. 4.2.3, and also Lighthill [85]). In addition to this interest-

ing feature, two nodal points of separation, one nodal point of attachment and

three other saddle points are recognized in Fig. 22. This skin-friction map seems

to be plausible since no topological rule is violated. For instance, no saddle-

point-to-saddle-point connection, which was shown to be structurally unstable

!98] occurs, nor is there a nodal-point-to-nodal-point connection without a saddle

point between them (see Fig. 16).

The computed very-near-surface particle paths, or skin-friction lines, which

resemble the oil flow pattern of the experiment are presented in Figs. 23 and

24. The pattern in Fig. 23 was computed using the diagonal algorithm with

the standard nonlinear smoothing. This simulation does compare well in terms

of the extent of the separation region, which has been underpredicted. Indeed,

the experimental separation is more than twice as large as the computed one.

The pattern in Fig. 24, however, was produced using the same algorithm but

with modified smoothing. The modified explicit nonlinear smoothing coefficient

given by Eq. (4.16) was employed, and f(M) = M was used as suggested by Eq.

(4.17). Note that the result of Fig. 24 is in better agreement with the experiment

as indicated by the larger spanwise extent of the separation bubble. Although

there is improvement, topologically Figs. 23 and 24 are the same; both have one
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nodal point of separation and onesaddle point. The nodal point is on the line
of separation and the saddlepoint is on the line of reattachment.

4.3.2 Effects of Turbulence Model

The turbulence model also has important effects on the surface pattern.

The Baldwin-Lomax model, which is an equilibrium model, predicts too sharp

an increase in the outer layer eddy viscosity through the separation shock [99].

The increase of eddy viscosity from its local equilibrium value far from the wall

leads to more turbulent mixing and to more shear stress to balance the adverse

pressure gradient, suppressing the tendency toward separation. Rotta [100] con-

cluded from experimental data that when turbulent flow is perturbed from its

local equilibrium state, a distance of about one order of magnitude greater than

the boundary layer thickness is required to attain a new equilibrium state. To

account for the upstrcam turbulence history effects, Shang and Hankcy [101]
used a relaxation eddy viscosity model, i.e.,

#T = NTeq -- (#Teq - I,ITo)eXP ( X--Xo)A (4.18)

which was applied on the y = const, lines, where PT is the turbulent dynamic

eddy viscosity, #Teq is the local equilibrium eddy viscosity evaluated from Eq.

(3.34), #T0 is the eddy viscosity at upstream location x0, and A is the relaxation

length. A good review of turbulence model relaxation techniques can be found in

Hung [99]. Conceptually, Eq. (4.18) approximates the experimental observation

that, in an abrupt disturbance of a turbulent flow, the Reynolds stress remains

nearly frozen at its initial value while it is being convected along streamlines, and

then exponentially approaches a new equilibrium state. In a numerical calcula-

tion, the initial location of the disturbance from which the relaxation process is

initiated, x0, and a relaxation length scale which describes the exponential decay

of the eddy viscosity distribution, A, must be specified. There are two limiting

cases which bound the relaxation length. For _ = 0, the turbulent eddy viscosity

equals the local equilibrium value, and for A = oc, the initial value PT0 is frozen

and is used everywhere in the region x > x(,.

The relaxation turbulence model has been applied to the separated flow case

in the previous comparison. Varieties of A values were tried, and A = 40 60 was

found to give a good agreement with the experimental pressure coefficient dis-

tribution as well as with the skin-friction field. Here 60 is the thickness of the

boundary layer at x0. The resulting computed skin-friction field for the case

discussed in Figs. 21-24 is presented in Fig. 25. As seen from the figure, the

streamwise separation is somewhat substantially increased; in fact, it is some-

what overpredicted. Also the location of the separation bubble is more inboard

than the experimental one, but this may be due to insufficient tip resolution in
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the computational grid. The remarkable feature of Fig. 25, however, is that
it reproducesthe dominant feature of the experiment, that is, the mushroom-
shaped separationzone. This feature was lacking in the Figs. 23 and 24. In
Fig. 25, although the experiment showstwo loci on eachsideof the saddlepoint,
the computation predicts two nodal points of separation. This is topologically
acceptable,although not accurate,becausea node and a focus are topologically
equivalent (seeFig. 15). The saddle point on the reattachment line was also
predicted by the computation.

The impact of the relaxation turbulence model on the pressurecoefficient
is displayed in Figs. 26 and 27. In Fig. 26, severalsectional pressurecoeffi-
cients are shownacrossthe separation zone. The solid line showsthe relaxation
turbulence modeland dashedline showsthe equilibrium turbulence model. Fig-
ure 26 reveals that the equilibrium model predicts strong shock waves which
more closely resemblethe shockscaptured in inviscid flow models. The relax-
ation model, however,predicts the pressureplateau downstream of the shock
due to the shock-inducedseparation. Another feature of the comparison is that
the shock wavesystemof the relaxation model movedslightly forward relative
to that of the equilibrium model. Neverthelessthis is not totally unexpected.
The displacementthickness6" of the boundary layer increasesdue to the shock-
induced separation.This portion of the boundary layer acts like a wedgewhich
displacesthe shockwavesystemforward. In Fig. 27, computations from the two
turbulence modelsare compared with experiment. The computed shock posi-
tions aresomewhatforward of the experimental ones.However,it is remarkable
that the pressureplateau predicted by the relaxation model is very closeto the
experimental one in Fig. 27b. On the other hand, the equilibrium model does
not predict sucha phenomenon.

There are severalthings to keep in perspective
crepancy betweenthe experiment and computation.
is, of course,the turbulence modeling, as wasproven
of the pressureplateauby using a simple relaxation
factor in comparingthe computation and experiment
needMachnumberand angleof attack corrections,a

when interpreting the dis-
One of the main problems
by the improved prediction
model. Another significant
is that the experiment may
common requirement when

comparing with experimentaldata. Thirdly, the tip resolution in the TNS pro-
gram is still poor which may be responsiblefor the inaccuracyof the location of
the separationzone.Finally, it is known that prescribingwind-tunnel exit pres-
sure in the computationsis useful for predicting the extent of separation and the
shock location [23]. Much improved results would be expected if thesesources
of error wereeliminated. In the future, a moredetailed study will be made with
much finer grid resolution using more powerful machinestogether with a better
turbulence model. Nevertheless,in this stage, it should be emphasizedthat the
relaxation turbulencemodelwasapplied to the computation of three-dimensional

58



separatedflows on wings for thefirst time, and improvementswereobservedin
the skin-friction topography aswell as the pressurecoefficient of a low aspect
ratio wing.

In the remaining parts of this chapter, two low aspect ratio wings will be
studied. Of these wings, the first one is an advanced technology wing called
"WING C," and the other wing is a rather simpler wing with NACA 0012airfoil
cross-sections.The flow topologyon thesewings will be thoroughly investigated
by running many casesand comparingwith the experimental data when they are
available. The techniquesdevelopedin this section were not employedon these
casespresently. However,in the future, as wasexplained in the previous para-
graph, an attempt will be madeto rerun thesecaseswith higher grid resolution
and better turbulence model. For the present, the aforementioned limitations
should be kept in perspectivewheninterpreting the results.

4.4. Simulation of WING C Flow Fields

4.4.1 WING C Design and Testing

In recent years, there have been significant efforts to compute flow fields

around wings in the transonic regime. Consequently, it is important to assess

the accuracy of these computations by comparing them with reliable experimen-

tal data. NASA Ames Research Center and the Lockheed-Georgia Company

contributed to this effort by conducting a cooperative computational and exper-

imental investigation of an advanced technology wing, called "WING C" (Fig.

3). The designers of WING C, R. Hicks of Ames Research Center and B. L.

Hinson of Lockheed-Georgia, used two existing computer codes: FLO22 [102],

a three-dimensional full potential equation solver and a numerical optimization

program based on the Method of Feasible Directions [103]. A highly swept, low-

aspect-ratio wing was selected that had supercritical airfoils with relatively thick

sections, moderate aft loading, mild shock waves, and a mild pressure recovery.

The mild shock wave was accomplished by limiting leading edge local Mach num-

bers to maximum of 1.2 to the leading edge. The design conditions selected were

a Mach number of 0.85 and a lift coefficient of about 0.5, at an angle of attack
of 5 ° .

A small-scale 0.261 meter semispan model of WING C was tested in the

Lockheed-Georgia Wind Tunnel (CFWT), which has a (0.508 x 0.712m.) test

section. The test Reynolds number based on the mean aerodynamic chord was

10 million. Surface pressures were measured both on the wing and on wind-

tunnel walls for comparison with calculations of wall effects. The small-scale

model data are presented in Ref. [104], and a comparison of these measurements

with several three-dimensional transonic inviscid codes is presented in Refs. [105]
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and I106]. The top and side walls of the three-dimensional test section have a
variable porosity capacity of up to 10%. Most of the wind tunnel testing was
conducted at a fixed wall porosity of 4 percent for minimum wall interference
effects. The influenceof the wind tunnel walls on the test data was explored
and a Mach numbercorrection of AM = -0.005 was found necessary.An angle
of attack correction of/ka = 0.9° wasalso neededin the experiments to match
the computations. The method of matching leading-edgepressureswasusedto
select an experimental angleof attack of 5.9°, for which the experimental and
computed (FLO22code,with a = 5°), leading-edge pressures agreed. Transition

strips were located at a fixed distance from the leading edge equal to 5% of the

mean aerodynamic chord on both the upper and lower surfaces of the wing.

A series of tests with the WING C was also performed by NASA Ames

Research Center as a part of the cooperative effort. For the Ames tests [107],

a large-scale 0.90 meter semispan model was tested in a (1.8 × 1.8 m.) wind

tunnel. Model blockage ratio in the test section was 1.3% at zero angle of attack.

Surface pressure measurements and oil-flow studies were made at the design

angle of attack of 5 ° over a Mach number range of 0.25 to 0.96 and a Reynolds

number range of 3.4 × 106 to 10 × l0 G. No Reynolds number effect on the results

was reported to exist. The lift interference from the tunnel walls was reported

to be small. This is because the leading-edge pressures of the experiment and

computations in the correlations happened to agree with each other at the design

angle of attack of 5 ° . Transition strips were installed at 4.5% chord.

4.4.2 Attached Flow Cases

The first set of WING C flow computations using the TNS program to be

discussed will be attached flow cases. These cases are included to demonstrate

the two-dimensional nature of the flow in the attached flow regime. This two-

dimensional flow aspect was part of the design goal undertaken by the WING C

design project. Attached flow calculations were done for two supercritical cases.

In all these and subsequent computations, the Reynolds number is based on the

mean aerodynamic chord of the WING C, and turbulent flow calculations are

started at the very leading edge without any transition model.

The first case consists of a slightly supercritical flow at Moo = 0.70, a = 5 °,

and a Reynolds number based on mean-aerodynamic-chord of 6.8 million. Figure

28 shows the pressure coefficient distribution of WING C at 5 spanwise stations.

The agreement between the two experiments and computation is quite good even

at the rt - 0.90 (tip) location, ttowever, the TNS results agree with the small-

scale model data !1041 slightly better than with the large-scale model data [107].

The discrepancy between the two sets of data is probably caused by differences in

wall interference effects, and differences associated with the measurement of angle
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of attack and free-streamMachnumber. An increasein the effectiveboundary-
layer thickness decambersthe aft section of a supercritical airfoil, which can
significantly affect the predictions of lift and pitching moment. Figure 28 and
the following figures showing pressurecoefficient distributions reveal that the
effect of the thickening boundary layer near the trailing-edge is more significant
in the large-scalemodel data than it is in the small-scalemodel data. Therefore,
the trailing-edge pressuresof the large-scalemodel data are consistently lower
than those of the small-scalemodel data. Although the general agreementis
good, the TNS trailing-edge pressurevaluesare overpredicted comparedto the
experiments. Figure 29showsthe experimental oil flow picture from Ref. 1107]
and the computed upper-surfaceskin-friction lines side by side. As seenfrom
the figure, the flow is almost entirely two-dimensional on the wing, and the
computation accurately reproducesthis situation.

The secondcomputation is again an attached flow casewith higher Mach
number. The flow conditions are Moo = 0.82, _ = 5 °, and Rem.a.c. = 6.8 x 106.

The computed pressure coefficient distributions are compared with data from

the small-scale and large-scale model tests in Fig. 30. The comparison is very

good in general, with the TNS solution in slightly better agreement with the

small-scale model data [104]. The same considerations about the discrepancies

between the experiments and computation presented for the Moo = 0.70 case

apply here. It is also useful to understand the shock wave development on the

wing for interpreting shock-induced separations. Mach number contours, which

show the shock wave pattern on the upper wing surface, are presented in Fig.

31. A shock wave forms parallel to the leading-edge, and a small second shock

wave forms nearly perpendicular to the root at the tip. Figure 32 shows an

experimental oil-flow photograph and the computed skin-friction lines. In the

oil-flow picture, only a weak shock wave is evident, indicated by a slight S-shape

in the oil streak lines which lie in the outboard section of the wing between

about 15% and 25% chord. This shock wave is not, strong enough to separate

the boundary layer, contrary to the earlier computations by Mansour [34]. The

flow is almost two-dimensional in the sense that the spanwise flow is negligible,

and flow deflection angles are less than 10 ° except near the leading-edge.

4.4.3 Separated Flow Cases

The first separated flow case consists of the WING C design conditions:

Moo = 0.85, a = 5 ° , and Re = 6.8 × l0 G. These conditions were intended to

result in attached flow with a mild shock wave and a mild pressure recovery. But,

for reasons discussed in Ref. 1107], these conditions produced a "local" (as called

by its author) flow separation. In this dissertation, the adjectives such as "local"

versus "global" or "open" versus "closed" will be avoided because of the current

debate. However, the interested reader may refer to Ref. [86] for particulars.
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The computedpressurecoefficientdistributions comparedwith experimental
data are presentedin Fig. 33. Two shock wave systems are distinguished: a
leading edgeshockand a secondaryshock. The computed leading-edgeshock
agreeswell with the experiments, though there are some discrepanciesin the
secondshock. Thecomputed secondshockseemsto agreebest with the average
of the experimental results in this region. Again the viscous effects decamber
the aft portion of the wing and the trailing-edge pressuresof the large-scale
model data (Keener [107]) are lower than the small-scale model data (Hinson

and Burdges [1041). Note that the TNS trailing-edge pressures agree well with

the small-scale model data. Figure 34 shows the wing-planform Mach number

contours plotted at a location above the upper-wing surface which displays the

well-known transonic lambda shock-wave pattern.

The experimental oil-flow picture of the same case is presented in Fig. 35.

Figure 36 shows the postulated skin-friction field. A separation line caused by

the swept shock wave emanates from a saddle point with two counter-rotating

vortices on either side. The conjectured skin-friction map also features two saddle

points and one nodal point of attachment. In three-dimensional separation, it is

not possible to define a closed separation zone or "bubble," as in two-dimensions.

Here, the separation zone is largely fed by the vortical flow on the inboard side

of the saddle point of separation. The tip flow is highly curved inboard towards

the separation zone but does not enter the zone. Also, some streamlines are en-

trapped by the inboard vortex while others pass by the separation region without

being trapped. The flow is almost two-dimensional outside the separation zone.

The computed skin-friction lines for this case are presented in Fig. 37. Note

that an angle of attack correction of +0.9 °, i.e. c_ = 5.9 °, was used in the com-

putations to get a closer computational/experimental agreement. In this com-

putation, the global features of the experiment are predicted well: the location

and size of the separation line, the streamlines being trapped by the vortex-like

formation inboard of the separation line, the curvature of the tip streamlines and

almost two-dimensional flow outside the separation zone. The critical points of

the skin-friction map weren't predicted, except a nodal point near the corner-like

region between the line of separation and the tip flow streamlines. Overall, the

simulation is globally very good and is quite encouraging. Moreover, although the

critical points were not predicted, the computed topology is capable of producing

a map similar to the experimental one: first of all, by increasing the grid resolu-

tion and using the techniques described in Sec. 4.3, the vortical flow inboard of

the line of separation can possibly evolve into a vortex and, since there is already

a nodal point on the other side, emergence of a saddle point between them is

inevitable. Such an evolvement was shown to be possible in Sec. 4.3 by applying

new artificial dissipation techniques and turbulence models. These techniques

weren't applied in this case, but if applied, a significant chance for improvement
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would be possible. Also, it shouldbe kept in mind that the grid near the tip
is coarseand increasingthe resolution would probably improve the correlation.
Another important issue to addressis that the thin-layer approximation may
be deficient in this region wherethere are strong streamwiseand crosswisevis-
cous flow gradients which are not accountedfor in the thin-layer approximation.
In addition, experimental uncertaintiesassociatedwith wind-tunnel wall interfer-
ence,angleof attack measurement,free-streamMach number measurement,etc.,
must be consideredin evaluatingthe computational/experimental correlations.

In light of these encouragements, it is interesting to go one step further and

study the flow field above the surface. Investigation of a three-dimensional flow is

by nature very complex and needs sophisticated graphics utilities. In this work,

a post-processing program called PLOT3D developed by Buning I108] at NASA-

Ames was used. PLOT3D is a graphics program capable of plotting all relevant

quantities of the flow field in three-dimensions. Particularly, the particle-tracing

utility of the PLOT3D was helpful because of its power to display the actual
fluid motion.

The particle paths, in general, can be divided into two groups: "streamlines"

and "sectional streamlines." These two terms are explained in Fig. 38. If a par-

ticle is released from point A, its path may be plotted in several ways, including

the three shown, AB, AC, and AD. If its motion is not confined to any surface,

it moves according to the fluid dynamic forces and becomes a "streamline." Note

that in steady flow, pathlines are equivalent to streamlines. If the motion of the

particle is confined to x - y or y - z planes, "sectional streamlines" are obtained:

the lines AD and AC respectively. It is not hard to imagine a sectional stream-

line. For example, the line AD may be likened to the motion of a free-surface

fluid particle when a body is immersed into a liquid and set into a motion. In

this case, the motion of the particle is confined to the free-surface of the liquid.

The sectional streamlines are computed from only the components of velocity on

that particular surface, i.e., the projections of the velocity vectors on the sur-

face. Note that the sectional streamlines are not the same as the projection of

streamlines on the surfaces. For example, if the streamline AB was projected on

the x - y or y - z surfaces, lines other than AC or AD would be obtained.

Now, let us explore how to obtain various lines and surfaces which are of

importance in the topography of flow fields. First of all, in steady flow, the

trajectory of a "free" particle is a streamline. It shows exactly where the fluid

is going. The skin-friction lines, which resemble the oil-flow, are simply the

sectional streamlines traced on a surface very near a body. The reader is reminded

that as z --, 0 the u/z field becomes identical to the surface stress field of a body

(see Sec. 4.2.2). Therefore, in Computational Fluid Dynamics, the skin-friction

lines are obtained by plotting the particle paths constrained to the first grid
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surfaceoff a body. However, the distance z from the body must be essentially

constant to make the u/z field identical to the u field.

The physical meaning of the sectional streamlines is limited. The sectional

streamlines coincide with the true streamlines only on the solid surfaces and

symmetry surfaces if the flow is also symmetric. However, keeping in mind the

limitations, the sectional streamlines are still instrumental for understanding the

flow fields. At this point, some figures which will be discussed later in this paper

can be used here as examples. As for example in Fig. 68, the sectional streamlines

are used to illustrate the vertical extent of the separated region, and the vortical

flow inside that region. From the very same figure, it could be imagined that

a line which emerges from the line of separation extends above the wing, and

divides the vortical flow in the separated region from the free stream which flies

over that region.

If we define a surface which emanates from a line of separation, and which di-

vides the mass of separated fluid from the surrounding fluid as a "streamsurface,"

the aforementioned line in Fig. 68 which is composed of closely packed stream-

lines, is the cross-section of that "streamsurface" versus the JL plane. Therefore,

we understand that it is possible to define the boundaries of a streamsurface by

cutting it through with a sufficient number of planes each of which displays the

sectional streamlines. This was done, for example, in Figs. 54 and 55. The sepa-

rated zone could also be studied by using the sectional streamlines in a different

orientation. In this case, as in Fig. 56, the sectional streamlines are plotted in

the JK (body-parallel) planes. These figures serve to define approximately the

boundary of the streamsurface as observed from above.

In other examples, Figs. 62 and 67, an even more dramatic application of

the sectional streamlines has been made. If we concentrate, say, on Fig. 67, the

boundaries of the vortical flow are evident. In this figure, particles are released

from different normal levels and are confined to stay on their respective planes.

Had the Figs. 67 b, c, d been placed on top of each other, the boundaries of the

vortical flow would have coincided. On the other hand, the true streamlines which

were traced for tile same case in Fig. 65 don't give us such clear information,

but give a very complex picture. Hence, the sectional streamlines are extremely

useful for such cases.

There are certain things to keep in mind when dealing with the sectional

streamlines, however. Since they are the integrated curves of the projections

of the velocity vectors on a certain surface, the orientation angle of the cutting

plane is very important. Unless the cutting plane angle is nearly perpendicular

to the lines of separation or reattachment, a distorted view is obtained. This is

illustrated in Fig. 39. The figure depicts skin-friction lines for an ideal case: a
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separation "bubble" which might occur on an infinitely swept wing. The skin-
friction field at the root of sucha "bubble" is cut by three planes I-I, II-II, and
III-III, making an angle of 90°, -45 °, and 45°, respectively, with the lines of

separation and reattachment. The separation and reattachment points are des-

ignated by S, S, t S," and R,R/ R', respectively, on the three cutting planes.

Observe that only plane I-I accurately represents the separation and reattach-

ment lines (S-R). For the other planes, the plotting program cannot accurately

predict these lines, showing the distance between the singular points to be shorter

on plane II-II (as S'-R'), and longer on plane III-III (as S"-R"). The situation

for the actual three-dimensional flows is even more difficult and, without use of

other sectional streamlines, it is not possible to gather accurate information.

These particle tracing techniques are very helpful in understanding three-

dimensional flow fields, and they will now be employed to survey the separated

WING C flow. Figure 40 shows the WING C surface grid together with the index

designations for the planes of interest which will be used in subsequent figures.

Figure 41 is the same as Fig. 37, except it is a three-dimensional perspective view.

In this figure, only one particle at each spanwise 77 station was released from the

J = 15 grid line parallel to the leading-edge. The particles were confined to the first

grid surface off the body, and therefore become sectional streamlines which define

skin-friction lines. This figure defines the separation line and the particles which

are entrapped by the separation zone, and also shows that the tip streamlines

do not enter the zone. To help understand the following particle-path plots,

the difference between the streamlines and sectional streamlines on the wing are

demonstrated in Fig. 42. Instead of releasing just one particle from each spanwise

station (as in Fig. 41), two particles were released in different modes. One set of

particles was confined to the first grid surface off the body, and the second set

was released without constraint from the same physical position. Hence, the first

set becomes sectional streamlines or, to be more specific, skin-friction lines, and

the second set becomes streamlines. As observed, two particles released at the

same point trace the same path for a short distance and then diverge. If the two

particles are released upstream of the separation zone, they trace similar paths

until they encounter the separation. In the vicinity of separation, the constrained

particle is entrapped but the free particle is not. It is easy to understand why

the unconstrained particle flies over if the separation zone is thought of as a

solid barrier. This situation may be likened to the phenomenon in Fig. 38.

Here, line AD resembles a constrained particle path and line AB resembles an

unconstrained particle path. Observe that the separation zone in Fig. 42 is thin,

as deduced from the curvature of streamlines above the region.

A series of pictures in Fig. 43 displays the separation surface emanating from

the separation line as well as other interesting features of the three-dimensional

boundary layer. In each picture, particles are released along an L-grid line which
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is perpendicular to the wing from near the body to abovethe boundary layer.
The particles are releasedfrom spanwisestations K = 14, 15, 18, and 21, which
span the separation zone. It should be emphasizedthat theseparticles arecon-
strained to stay on their respective(-r/ parallel surfacesto definethe separation
surface. If any particle hits the separationsurface, it must go around it because
the separation zonebehaveslike a solid object. Figure 43a showsthe particles
releasedfrom the K = 14 station, which is the last station, for which particles
are not entrapped by the vortical-like flow of the separation zone. The invis-
cid streamlines arealmost parallel to the free-stream direction. As the viscous
boundary layer is gradually penetrated, the streamline curvatures rapidly in-
creasetoward the separation zone. Figure 43b showshow the particles released
from K = 15go around the separation zone.The first particle path off the body
is the skin-friction line which representsthe line of separation. Notice that the
secondparticle path follows parallel to the line of separation and becomesa tip
flow. Figure 43c showsthe particles releasedfrom the K = 18plane. This fig-
ure clearly showshow the separation surfaceevolvesfrom the line of separation.
When the particles releasedfrom different levels approach the separation'zone,
they can not penetrate it; rather they flow over the separation surface,which is
also a surface madeof streamlines. Finally, Fig. 43d shows that the particles
releasedfrom the K = 21planeavoid the separation zoneand passby it without
entrainment. This was already discoveredin the study of the oil-flow pictures
(seeFigs. 35 and 36). To give an idea about the thickness of the separation
zone,sectional streamlinesconstrained to lie within _-_" planesare presentedin
Fig. 44. The separationzoneis extremely thin, being lessthan 0.001chords. To
completethe flow field survey,sectional streamlines in planesparallel to the wing
surface (_-r/) are presentedin Fig. 45. The separation and reattachment lines
are observedin the L = 2 plane, which is the first grid surfaceoff the body. The
Figs. 45 b, c and d, define the boundary of the streamsurfacewhich emanates
from the line of separation in Fig. 45 a. The separation line-type lines in Figs.
45 b, c, and d are the cross-sectionsof the streamsurfacewith the JK planes.

The secondseparatedcaseassociatedwith WING C consistsof a flow at
off-designconditions: Mo_ - 0.90, a _ 5 °, and Re - 6.8 × 10 c_. The computed

and experimental pressure coefficient distributions are compared in Fig. 46.

The leading-edge and aft shock-waves are stronger than those of the previous

case, and the aft shock-wave is further downstream. This is a consequence of

the increased free-stream Mach number. Despite a slight overprediction of the

trailing-edge pressures, the agreement between the experiment and computation

in this difficult case is very good except in the tip region, probably because of

the coarse grid effect. The strength and location of the lambda shock-wave is

accurately predicted. The planform view of WING C showing the lambda-shaped

shock-wave is presented in Fig. 47. This agrees very well with the experimental
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pattern reported in Ref. [104]. The Mach number contours of the _-g"plane
which cuts the wing in the streamwisedirection at the station 77= 0.77% is
shown in Fig. 48. The zonal boundaries are also shown in this plot. Note
the smoothnesswith which the shockwavecrossesthe zonal interface boundary.
This indicates that the communication between the blocks is implemented in a

;.
conservative manner. In addition, most of the other contours cross the zonal

interface boundaries in a smooth and continuous fashion. Downstream in the

wake where the fine viscous grid interfaces with a relatively coarse grid (see Fig.

5), the wake abruptly stops. This aspect of the solution exists because the coarse

inviscid grid cannot retain the sharp wake gradient.

The surface oil-flow photograph and the present postulation of the skin-

friction lines for this case are presented in Fig. 49. When the Mach number

is increased from 0.85 to 0.90, the flow separation that existed over the outer

30% of the wing moves slightly downstream and grows significantly in size. The

counter-rotating vortices which emerged in the previous case grow substantially,

and the larger vortex inboard of the separation line extends as far as the trailing-

edge. A line of separation emerges from the saddle point of separation. There

is one focus on the tip side and a node of separation on the inboard side of this

line. Another saddle point exists very near this node of separation. This saddle

point lies between the node and the second, larger, focus. There exists another

saddle point near the trailing-edge. The inboard vortex is strong and provides

a mechanism to feed fluid to the separation zone by entrapping the streamlines

coming from the inboard side of the separation zone. The flow between the

separation zone and the symmetry plane is again almost two-dimensional in the

sense that the spanwise flow is negligible.

The computed skin-friction lines for the same case (Moo = 0.90) are pre-

sented in Fig. 50. As observed, the agreement between these computed lines

and the experimental picture in Fig. 49 is rather poor. A weak swirling motion

is exhibited in the computation on the inboard side of the separation zone, yet

the smaller vortex near the tip is nonexistent. Because of the coarseness of the

present grid near the tip, this vortex is probably not resolvable. The disagree-

ment occurs close to the tip where the computation does not capture the shock

location well. It is this poor shock location (see Fig. 46) which moves the sepa-

ration line too close to the trailing edge and causes the disagreement between the

experiment and computation. In an attempt to better align the computed line

of separation with that of the experiment, this case was recalculated at a slightly

lower Mach number. It was found that when the Mach number was reduced

slightly, to 0.88, significant changes were observed which were in close agreement

with the Moo -- 0.90 experiment.

The computed skin-friction lines for this slightly lower Mach number are
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shownin Fig. 51. This flow pattern is indeedmoredescriptiveof the experimental
oil-flow at Moo = 0.90: the line of separation moves forward, in better agreement

with experiment, and there is substantially stronger vortical flow in the area of

the inboard vortex. The node of separation in the experiment was captured. The

saddle point which lies near the trailing-edge of the wing in the experiment was

also captured. However, the vortex close to the tip has not been resolved. Had

this vortex been resolved, emergence of the experimental saddle point between

this vortex and the node would have been automatic according to the continuity

equation. The computation also predicts a reattachment line at the trailing-

edge near the tip, though this doesn't exist in the experiment. To recapitulate,

although quantitative details are not accurately reproduced many qualitative

details are. The location and extent of separation are in reasonable agreement

with experiment, as is the pressure distribution. The onset of vortex formation

which is evident in the experiment is also present in the computation. In addition,

experimental uncertainties associated with wind-tunnel wall interference, angle

of attack measurement, free-stream Mach number measurement, etc., must be

considered in evaluating the computational/experimental correlations.

Although the surface flow was not accurately reproduced, it is instructive

to explore the three-dimensional flow exhibited by the computation above the

wing. Again, the sectional-streamlines will be used to study the flow field. The

computed skin-friction lines which were presented in Fig. 51 are shown again in

perspective view in Fig. 52 to give a more in-depth look at the flow field. The

rapid convergence and divergence of the skin-friction lines clearly mark the sepa-

ration and reattachment lines, respectively. To give an idea about the thickness

of the separation, sectional streamlines are presented on a streamwise cut _-f

plane at spanwise station K = 17 (Fig. 53). The thickness of the separation zone

is about 0.005 chords; which is much larger than the previous case. Figure 54 is

an expanded view of the previous picture in the vicinity of the line of separation.

Note that a shear surface lifts off the body from the line of separation at point

S on the _-f computational p!ane. This shear surface partitions the outer flow

from the separated flow, and is made of many streamsurfaces emerging near the

separation line which enfold each other. In Fig. 55, a series of sectional stream-

lines in (_-f) planes which span the separation zone are presented. As seen in

the figure, the boundary layer displacement thickness grows from station K = 12

to K = 20. In this figure, the vertical scale was expanded 5 times with respect to

the horizontal scale to better observe the details. At the K = 19 and 20, a vortex

core is observed under the shear surface. It should be kept in mind that, in all

these plots, there is a substantial amount of transverse flow perpendicular to the

- _ planes. Also note that the points of separation and reattachment cannot be

determined accurately from these views for the reasons enumerated in reference

to Fig. 39. Accurate detection is only made possible by the skin-friction lines.
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Sectional streamlines through the separation zone in the surface-parallel
computational planes ((-7/ surfaces)are presentedin Fig. 56. This figure gives
a sequenceof viewsfrom the body surfaceto the edgeof the separation zone.The
shearsurfaceemanating from the line of separation acts asa barrier betweenthe
flow within the zoneand the flowupstream of it. In this figure, the approximate
location of the shearsurface is seenasa line of crosssectionbetweeneachbody-
parallel computational plane andthe zone.

The last computedcaseassociatedwith WING C involved another off-design
condition: Moo = 0.95, with a = 5 ° , and Re = 6.8 × 106 . The comparison

of the computed skin-friction lines with the experimental oil-flow photograph

was similar to the Moo = 0.90 case discussed before and is not presented here.

However, the pressure coefficient comparison is shown in Fig. 57. Despite the

high free-stream Mach number and the large amount of separation, reasonable

agreement is obtained except at 90% semi-span.

4.5 Simulation of NACA 0012 Wing Flow Cases

Simulation of the NACA 0012 wing with wind tunnel walls modeled was pre-

sented in Sec. 4.4. Experiments made by Lockman and Seegmiller [61} furnished

the information necessary to assess the capabilities of the various features of the

TNS code. Among these are the wind-tunnel wall modeling characteristics, and

the effects of artificial viscosity and turbulence models. In order to ascertain the

degree of robustness of the present algorithm and, in particular, the ability of

the present zonal interface scheme to cope with large flow gradients, some NACA

0012 wing free-air cases in more extreme conditions were run.

Three of these cases are presented here: flows with free-stream Mach num-

bers of 0.80, 0.85 and 0.90 at an angle of attack of 5 degrees with a Reynolds

number based on chord of 80 million. Free-air conditions were necessary because

the calculations with wind-tunnel walls modeled for the highest two Mach num-

bers were choked (see Holst et al. [45]). As a result, no experiment is available

to compare with these cases. However, very interesting separated surface flow

patterns and three-dimensional flows above the wing were obtained. They are in-

troduced here with the belief that these solutions will be helpful in understanding

separated wing flows.

The first case consists of a flow with mild streamwise separation. Flow

conditions were Moo = 0.80, a = 5 °, and Re = 8 x l0 s. Computed skin-friction

lines are presented in Fig. 58. Except for significant inboard flow at the tip which

is induced by the 5°angle of attack, the surface flow topology for this case is very

similar to the wind-tunnel case presented in Fig. 23. Figure 58 describes a line

of separation, a narrow streamwise separation zone, and a line of reattachment.
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There is a node of separation and a saddlepoint on the lines of separation and
reattachment, respectively.

The secondcomputation correspondsto a massively separatedcase. Flow
conditions were Moo = 0.85, _ = 5 °, and Re = 8 x 106 . Figure 59 shows the

wing upper-surface Mach number contours. As observed, there is an S-shaped

swept shock wave which extends from the symmetry plane to very near the tip.

This shock wave causes the boundary layer to separate between 20% to 90% of

semi-span as shown in Fig. 60. A line of separation emanates from a saddle

point with a focus on the inboard side and a nodal point of separation on the

outboard side. This case exhibits a large reverse surface flow between the line of

separation and the line of reattachment, which is located very close and parallel

to the wing trailing-edge. Another saddle point can be recognized at the wing

trailing-edge/tip. It seems that there is another line of secondary separation in

addition to the primary streamwise separation. Surface flow coming from the

tip region and from the line of reattachment coalesce on this line of secondary

separation, and a streamsurface leaves the wing surface.

The large vortex defined by the focus constitutes the root of a large vortical

flow between the lines of separation and reattachment. Also, the streamsurface

emanating from the secondary line of separation probably coils into two small

secondary vortices above the wing. Development of this large vortex and the

secondary vortices above the wing are illustrated in Figs. 61 and 62. Figure 61

presents a series of three-dimensional pictures. They show sectional streamlines

plotted on subsequent body-parallel computational planes in the JK plane.

Pictures from a to h are successive planes above the body surface to a

height of nearly 10% of a chord. The pictures a, b, and c show lines similar

to the separation line of Fig. 60. These lines are the cross sections of the

computational planes with the separation surface which emerges from the line of

separation. Note that there is a saddle point on each of these lines. The large

vortex which coils up from the focus of Fig. 60 maintains its strength throughout

the sequence of computational planes. The secondary separation line of Fig. 60,

though not very clear, breaks into two secondary vortices as shown in Figs. 61d,

61e, and 61f. In these pictures, particles were released inside the separation zone

to describe these vortices. Finally, pictures g and h of Fig. 61 show that these

secondary vortices were probably dispersed and could not be traced any further,

but the large vortex remains. Figure 62 complements Fig. 61 in describing the

vortical flow pattern above the wing. In this figure, particles were released from

the leading-edge at different L-levels and each was constrained in its respective

JK plane. Figs. 62a, 62b, and 62c show that the particles very near the wing

are captured by the core of the large vortex, whereas the particles away from the

body flow past it undisturbed. Figure 62d shows the particles captured by the
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big vortex and the secondaryvorticesaswell.

The last case is again a massivelyseparated case. Flow conditions were
Meo = 0.90, a = 5 ° , and Re = 8 x 106 . Again in this case, an S-shaped

shock wave extending from the symmetry plane to very near the tip causes the

boundary layer to separate. This shock wave is stronger than the previous one,

and separates the boundary layer in the same S-shape. In this case, computed

skin-friction lines exhibit a very interesting surface pattern shown in Fig. 63.

The separation zone extends from the symmetry plane to very near the tip, and

the chordwise extent of the separation zone varies from about one- to three-

quarters of a chord. A line of separation emanates from a saddle point which

is located at about two-thirds of the span. A focus occurs near the tip, and a

node of separation is located inboard at about 30% of semispan. On the line

of reattachment, another saddle point is recognized. Expanded views of these

critical points are shown in Fig. 64. In this figure, the focus quite interestingly

defines a motion which is not swirling inward, but swirling outward from the

core. Although not shown here, a surface pressure plot reveals that this vortex

is located at a low pressure region. The primary mechanism which feeds this

vortex seems to be the downward flow coming from the large vortex as seen in

Fig. 65. In this figure, particles are injected from about 40% of chord at L =

2 and are unrestricted. This figure exhibits two important phenomena: 1) there

are two vortices, a large and a small one, and they are located at either side of

the saddle point of separation, 2) it seems as if the streamlines coming from the

large vortex feed the small vortex. Note that particles by the small vortex eject

from it at the tip side. This is a very curious mechanism.

Unlike the particles in Fig. 65, the particles in Figs. 66a and 66b are

restricted to their respective computational JK planes which are parallel to the

surface. They are, therefore, sectional streamlines and define the core of the large

vortex. The vortex core starts from the nodal point of separation shown in Fig.

63 and expands as it moves out from the surface. Sectional streamlines are also

used in Fig. 67 to give the situation a more three-dimensional appearance. In

these figures, the same technique utilized in making Fig. 43 is used. Sectional

streamlines on JK (body-parallel) computational planes are obtained by releasing

particles from different levels at particular spanwise stations. In Figs. 67a and

67b, particles are released from the tip side of the saddle point at K =- 18 and 14.

Figure 67a specifically shows that the particles closest to the surface are drawn

into the small vortex. Particles more distant from the surface swirl around the

small vortex but go to the core of the large vortex without entering the small

vortex. Finally, particles away from the body run on straight paths without

swirling. Figure 67b shows the same sort of behavior, but exhibits the particles

captured by the large vortex more clearly. Figures 67c and 67d display the

particle paths for particles released from K = 12 and 10, respectively, which are
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inboard of the saddlepoint.

The most important feature of thcsc figures is that they define an approxi-
mate envelopeof the large vortex. The coreof the vortex is observedat the bot-
tom, and the near-circlesat each level altogether define an approximate bound-
ary of the three-dimensionalvortex. This idea can besupported by placing Figs.
67b,67c, and 67don top of eachother and observing that they fit together. Note
that someparticlesare drawn toward the low pressureregionof the small vortex.
Finally, Fig. 68 showsthe sectional streamlines in JL planeswhich are perpen-
dicular to the wing surface. This cross-sectionalplot wasmade at a semi-span
station of 2y/b = 0.66. Note that at this station, the separation region is large
and easily extendsfrom the Navier-Stokes region, across the zonal boundary,
into the Euler region. The particles passsmoothly acrossthe interface boundary
with no function or slope discontinuities.
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Fig. 14. The Cartesian coordinates,velocities and surfaceshear-stressvector compo-
nents.
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Fig. 21. Oil-flow pattern on upper wing surface: NACA 0012 airfoil section, AR = 3,

ALE : 20 °, O_TWIS T _ 0 °, TR = 1.0, Moo = 0.828, a = 2 °, Re¢ = 8 x 106.
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"Postulated" skin friction lines for flow over the NACA 0012 wing of Fig. 21.
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Fig. 23. Computed skin friction lines for the flow over the NACA 0012 wing of Fig. 21

with standard artificial dissipation model.
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Fig. 24. Computed skin friction lines of the flow over the NACA 0012 wing of Fig. 21

with new artificial dissipation model.
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Computed skin-friction lines for the flow over the NACA 0012 wing of Fig. 21

with new dissipation model and relaxation turbulence model.
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Fig. 28. Comparison of experimental and computed pressure coefficients for WING C:

Moo = 0.70, c_ = 5 °, Rem.a.c. = 6.8 x l0 G.
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Fig. 29. An experimental oil-flow picture (from Ref. [107]) and computed upper sur-
face skin-friction lines for WING C: Moo = 0.70, a = 2 °, Rem.a.c. = 6.8 x 106.
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Fig. 30. Comparison of experimental and computed pressure coefficients for WING C:

Moo = 0.82, a = 5 °, Rem.a.c. = 6.8 × l0 G.
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Fig. 32. Experimental oil-flow picture (from Ref. [107]) and computed upper surface

skin-friction lines for WING C: Moo = 0.82, a = 5 °, Rem.,_.c. = 6.8 x 106.
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Fig. 33. Comparison of experimental and computed pressure coefficients for WING C:

Moo = 0.85, a = 5 ° , Rem.a.c. = 6.8 × 106 .
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Fig. 34. Mach number contours on the upper surface of WING C: Moo = 0.85, a = 5 °,

Rem.a.c. - 6.8 x 10 _.
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Fig. 35. Experimental oil-flow picture (from Ref. I107]) and an expanded view of
the counter-rotating vortices for WING C: Moo = 0.85, c_ -- 5 °, Rem.a.c. =

6.8 x l0 G.
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Fig. 36. "Postulated" skin-friction lines for the WING C case shown in Fig. 35

(Moo = 0.85).
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Fig. 37. Computed skin-friction lines for WING C upper surface: Moo = 0.85, a =

5.9 °, Rem.a.c. = 6.8 × l0 G.

96



C

D

I

\
\

\
\

\

\
\

\

A Z

AB : STREAMLINE

AC, AD: SECTIONAL STREAMLINES

X

Y

Fig. 38. Illustration of "streamlines" and "sectional streamlines."
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Fig. 39. Illustration of obtaining different separation and reattachment points for a

"bubble" depending upon the viewing angle.
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/

Fig. 40. Perspective view of the WING C surface grid and index designations for tile

computational planes.
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Fig. 41. Perspective view of computed skin-friction lines for WING C: Moo = 0.85,

a = 5.9 °, Rem.a.c. = 6.8 × l0 G.
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Fig. 42. Perspective view of computed "streamlines" and "sectional streamlines" for

WING C: Moo = 0.85, _ = 5.9 ° , Rem.a.c. = 6.8 x 106 .
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Fig. 43. Sectional streamlines on JK (body-parallel) computational planes obtained by
"releasing" p_r_;_l_ _ A;tr .... + L revels for a fixed ---'---

.................... v,_,ue of J (Moo = 0.85).
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Fig. 44. Sectional streamlines on JL (cross-sectional) computational planes obtained

by "releasing" particles at different L levels from streamwise stations through

the separation zone (Moo = 0.85). (Note the expanded z-scale.)
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Fig. 45. Sectional streamlines on JK (body-parallel) computational planes. Particles

are "released" from a line parallel to the leading-edge (Moo -- 0.85).
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Fig. 46. Comparison of experimental and computed pressure coefficients for WING C:

Moo = 0.90, a = 5 °, Rem.a.c. = 6.8 x 106.
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Fig. 47. Mach number contours on the upper surface of WING C: Moo = 0.90, a = 5 °,

Rem.a.c. = 6.8 × 106 .
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Fig. 48. Cross-sectional Mach number contours for WING C at 2y/b = 0.77: Moo =

0.90, a = 5 °, Rem.a.c. = 6.8 x 106.
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Fig. 49. Experimental oil-flow picture(from Ref. [107]) and "postulated" skin-friction
lines for WING C: M_ = 0.90, a = 5 ° , Rem.a.c. = 6.8 × 10 G•
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Fig. 50. Computed skin-friction lines for WING C upper surface: Moo = 0.90, a =

5.0 °, Rem.a.c. = 6.8 × 106.
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Fig. 51. Computed skin-friction lines for WING C upper surface: Moo = 0.88, a =

5.0 °, Rem.a.c. z 6.8 x 106 .
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Fig. 52. Perspective view of computed skin-friction lines for WING C: Moo = 0.88,

a = 5.0 °, Rem.a.c. = 6.8 x 106.
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Fig. 53. Sectional streamlines at the K=17 (cross-sectional) computational plane ob-

tained by "releasing" particles at different levels from a station upstream of

separation (Moo = 0.88).
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Fig. 54. Expanded view of Fig. 53 near the separation point (z-axis has been expanded

10 times more than the x-axis for better definition of the separation region).
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Fig. 55. Sectional streamlines on various JL (cross-sectional) computational planes

obtained by "releasing" particles at different levels from stations through the

separation zone (Met = 0.88). (Note magnification.)
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Fig. 56. Sectional streamlines on JK (body-parallel) computational planes. The par-

ticles are "released" from a line parallel to the leading-edge (Moo = 0.88).
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Fig. 56. concluded.
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Fig. 57. Comparison of experimental and computed pressure coefficients for WING C:

Moo = 0.95, a = 5 ° , Rem.a.c. = 6.8 × 106 •
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Fig. 58. Computed skin-friction lines for the flow over the NACA 0012 wing; Moo --
0.80,_=5 ° ,Rec=8x 106 .
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O.250

Fig. 59. Mach number contours on the upper surface of NACA 0012 wing; Moo = 0.85,

= 5 ° , Re_.= 8 x l0 G.
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Fig. 60. Computed skin-friction lines for the flow over the NACA 0012 wing; Moo =

0.85, a= 5 ° ,Rec =8x l0 G.
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Fig. 61. Sectional streamlines on JK (body-parallel) computational planes. Particles

are '-:released" from a iine parallel to the leading-edge (Moo -- 0.85).
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Fig. 61. concluded.
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Fig. 62. Sectional streamlines on JK (body-parallel) computational planes obtained by

"releasing" particles at different L levels for a fixed value of J (Moo = 0.85).
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Fig. 63. Computed skin-friction lines for the flow over the NACA 0012 wing; Moo =

0.90, a=5 ° ,Rec=8x106 .
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Fig. 65. Three-dimensional streamlines of the flow over the NACA 0012 wing; Moo =

0.90, a=5 °,Rec =8 x 106 .
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Fig. 66. Sectional streamlines on JK (body-parallel) computational planes. Parti-

cles are "released" from a line parallel to the leading-edge at 40% chord

(Moo = 0.85 I.
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Fig. 67. Sectional streamlines on JK (body-parallel) computational planes obtained by

"releasing" particles at different L levels for a fixed value of J (M_ = 0.90).
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Fig. 68. Sectional streamlines in JL (body-normal) plane at 2y/b = 0.66.
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CHAPTER 5

CONCLUSION

5.1 Summary

The significant achievements in this work are associated with both numer-

ical methods and fluid mechanics. A fast, efficient, and reliable computer pro-

gram (TNS) was developed, and using this program, numerical solutions of the

Euler/Navier-Stokes equations for the transonic flow about wing geometries were

obtained. For the first time, computations produced good agreement with exper-

iment for low-aspect-ratio, separated wing flows in the transonic regime. Under

experimental guidance, new numerical techniques were developed to improve the

computations. Contributions to the understanding of separated flows were made

through the extensive use of computer graphics. Familiar as well as new fluid

flow phenomena, which should be of interest to experimental and theoretical fluid

mechanics, was displayed.

The TNS computer code represents the first three-dimensional Euler/Navier-

Stokes zonal algorithm. Using this program, fine grid-resolution flow fields about

wing geometries have been achieved. It is a generic program which includes wind-

tunnel wall or free air simulation capability, and is suitable, with specific exten-

sions, for computing wing-fuselage or wing-fuselage-tail configurations. The TNS

program is more than one order of magnitude faster than comparable Navier-

Stokes solvers for wing geometries reported in the literature. It was shown that,

instead of using the original block-ADI algorithm, by using a diagonal-ADI al-

gorithm with certain enhancements, a speed-up of 40 was possible.

Also, an efficient data management scheme using SSD (solid state device)

resulted in an I/O time of about 1-2% of the CPU time for a typical run. On

the other hand, if standard rotating disk had been used, an I/O time of about

1000% of the CPU time would have resulted!

Using the TNS program, good correlation between experiment and compu-

tation was achieved for complex flow calculations associated with shock-induced

separated flows. First, the effects of different artificial dissipation models incorpo-

rated into the block and diagonal algorithms associated with the TNS code were

assessed for attached and separated flows. It was found that these algorithms

computed correct pressure distributions, but surprisingly predicted different skin-

friction fields. Accurate computation of pressure is not the ultimate goal of a

Navier-Stokes solver; even a good potential flow solver can give a reasonable an-

swer if the flow conditions are not extreme. A Navier-Stokes code should resolve

the boundary layer and reasonably compute the viscous and heat transfer effects.
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In this dissertation, a simple schememodifying the artificial dissipation model
associatedwith the diagonal-ADI algorithm in the TNS codewasproposedand
successfullyimplementedfor both attached and separatedflowcases.As a result
of this, for example, C.f was increased roughly 50% for an attached flow case,

and showed excellent agreement with the result of another "proven" viscous-

inviscid interaction program. Also, using this scheme, improvements have been

observed on the skin-friction maps of shock-induced separated flows as compared

to oil-flow photographs.

Another aspect of this work has been to prove that a simple idea, such as

the relaxation turbulence model, can improve numerical computations. In this

respect, certain limitations of the algebraic turbulence model due to Baldwin

and Lomax associated with the TNS code were eliminated. As a result, the quite

challenging task of obtaining pressure plateaus associated with boundary layer

separation was achieved. Also, and perhaps more importantly, the distribution

of critical points associated with the skin-friction map of one transonic separated

case (NACA 0012 wing, Moo = 0.826, o = 2 °) was changed from an incorrect

topology into the correct topology as supported by the experimental oil-flow

picture.

However, the most important outcome of this work was the beginning of

the fulfillment of a long-awaited expectation of seeing agreement between exper-

imental oil-flow pictures and computations for separated flows. This desire was

expressed by George Schairer, a retired senior Boeing company engineer, to the

first author's research advisor Brian Cantwell in a private communication. In

this work, one very good correlation between the computed skin-friction field

and experimental oil-flow for a highly swept, tapered, and cambered wing, i.e.

the WING C, was obtained for the first time (in the case ofM_ = 0.85, a = 5°).

Also, two other computed cases (WING C, Moo = 0.88, a = 5 ° and NACA 0012,

Moo = 0.826, c_ = 2 °) show relatively good correlation. All computed cases are

in good agreement with experiment in terms of the pressure distributions.

Investigation of the TNS code's ability to compute massively separated flow

cases in the transonic regime for the NACA 0012 wing resulted in some quite

fascinating phenomena. The skin-friction maps of these cases produced very

well-formed critical points, particulary two surface vortices; one spiraling inward,

another spiraling outward! This is the first time computations of this type have

been produced. It was learned (by private communication, Tobak and Fairlie,

1985) that the presence of an outward spiraling vortex has been presumed to

be less likely by quite a few experimentalists in their work. Also, it is believed

that the illustrations of three-dimensional flow fields above the NACA 0012 wing

and WING C via computed "streamlines" and "sectional-streamlines" put some

light on the nature of three-dimensional vortical flows emanating from separated
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turbulent boundary layers. This is an area wherethe experimentsare limited to
only surface oil-flow techniques,or again limited dyeor smoke flow techniques.
It is hoped that a theoretical or experimental fluid mechanicsresearchermay
further benefit from the computedresults.

5.2 Recommendations for Future Work

Throughout this work, the lack of sufficient grid resolution has been the

single most important limiting item. Without enough grid resolution, it is not

possible to give a definitive answer to the question of discrepancy between an

experiment and computation. Therefore, the first recommendation is to rerun

these cases with higher grid resolution when a faster computer with more memory

is available. Another way of refining the grid without waiting for a new computer

is to place additional zones in crit_i'cal regions of the flow; for example, the tip.

An H-C or O-C grid topology at the tip would be ideal for this task. However,

this necessitates a more sophisticated interpolation program to handle the new
situation.

As might be remembered, another important shortcoming was the poor res-

olution of the viscous wake. The viscous grid zones do not extend downstream

far enough to resolve the far wake. Since the coarse Euler grid cannot support

the high gradients associated with a wake structure, this causes certain inac-

curacies, and can become a very significant factor especially at high angles of

attack involving future applications with multiple lifting surfaces. However, it is

expected that placing another zone in the wake will solve the problem.

The importance of artificial dissipation was previously emphasized, and a

simple correction was suggested which worked quite nicely. However, a better

scheme is highly desirable. Probably, the present scheme which uses the sum of

the spectral radii of the flux jacobians as a coefficient is not good, because it

varies like O(1/Af) with distance f through the boundary layer. This scheme

was originally designed for the Euler equations where it works well. An improved

scheme which is especially designed for Navier-Stokes computations would be

appropriate.

Turbulence modeling is, of course, extremely important for high Reynolds

number flows and for separated flows. It is known that, with the exception of

few cases, the Baldwin-Lomax or Cebeci-Smith algebraic eddy viscosity models

cannot properly handle two- or three-dimensional separated flows. Work needs to

be done in this area implementing existing or developing new turbulence models.

This should be done with sufficiently refined grids so as to eliminate coarse grid

effects from affecting the results.
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One subject which deservesspecial attention is wind-tunnel wall simula-
tion. It would be appropriate to modelporous wind-tunnel walls and assesstheir
effects. Before this can be successful,detailed measurementsat the walls are
required. There is plenty of room for improvementwith solid wind-tunnel walls
as well. As is known quite well from two-dimensional computational work, pre-
scribing wind-tunnel exit pressureas well as upper and lower wall pressuresas
boundary conditions is extremely important. It is believedthat providing these
capabilities to the TNS code should improve wind tunnel wall simulations. It
should especially lessenthe discrepancybetween the experimental measurement
and computation of the shockstrength and location.

All of the separatedflow computations in this dissertation belongto shock-
induced separationsat high Reynoldsand Mach numbers. However,it would be
interesting to investigateflows for the subcritical or even low subsonicregimes
at high anglesof attack. Sucha study would help in understanding separation
due to adversepressuregradients. The aircraft industry would benefit greatly
from this, becausesuch a calculation simulates stall behavior of a wing during
take-off or landing.
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Appendix A

FLUX JACOBIAN AND VISCOUS COEFFICIENT MATRICES

The flux jacobians A, B, and (_ are given by

Ko

K1¢ _ - uO

K_¢ _ - vO
Ka¢ 2 - wO

K1

Ko + 0 - KI(-y - 2)u
Klv- K2(q - 1)u

Klw - K3("/- 1)u

{K,["tCe/P) - 4)21

-(_- 1)uo}

K2

K2u- (_ - 1)Klv

Ko + 6 - K2(_ - 2)v
K2w - K3(_/- 1)v

{K2[_/(e/p) - dp_1

-('/- 1)re}

K3

K3u - ("1 - 1)KlW

K3v - (_ - 1)K2w

Ko + 0 - K3('_ - 2)w
{Kab(e/p) -¢=1

-(_- 1)_0}

0

K,(_- l)
K2(q- 1)

K3(q - 1)

Ko + -,/0

where

0' = o.5(_- 1)(_' + v_+ _)

0 = Klu + K2v + Kaw

and, for example to obtain A,

(A.1)

Ko= _t, KI= _, K2= _y, K3= _

also, the viscous coefficient matrix is given by

[o ol o o o 1
m21 a16_(P -1 a2_¢(P -1) aa_(P -1) 0

/m... ._(,-') _._._(p-') ._._(p-') o
kms1 m52 m53 m54 a0_f(P -1)

(A.2)
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with

7n21 =

T/_31 -----

?T/4 1 -----

77/51 =

-+-

,_(-,,/p) + ,_(-_/p) + ,_(-w/p)

,_(-u/p) + ,_._(-v/a) + ,_(-,./p)

oe3/5_-(--u/p ) -t- lXaCSf(--v/p) + oe6cS;(--tv/P)

,_¢(-u_/p) + ,_(-2,,v/p) + ,_(-2,,w/a)

,_._(-v_/p) + ,_(-,._/p) + ,_(-2vw/p)

÷ ,_o_(-_/p_)+ ,_o_[(u_+ v_+ w_)/a]

m_ : -m_l - '_o_("/P), m_ : -m_ - ,_o_(v/a)

m54 : --m41 -- aoCSf(w/P)

2 2

a2 : (#/3)_'_f v, a3 = (/z/3)_'xf_

_ : _[_ ÷ (4/3);_+ _], _ : (u/3)_

2
a6 = /z[fz2 + _'y + (4/3)fz 2]

(a.3)
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Appendix B

SIMILARITY TRANSFORMATION MATRICES

The similarity transformation matrix for the Jacobian matrices .4, /_, and

(_ is

T_

_ ky L

[_¢2/('7_ 1) [_¢2/('7- 1) [L¢_/('7- 1)
+p(_zV- _w)] +p(ic_w- kz_)l +p(_u - _v)]

_(u + _c)
_(v + _c)
_(w + i%c)

_[(¢2 + c2)/('7 _ 1)+ c0]

where, k = _, rl, and f

.(u- _)
a(v-_:yc) , (B.1)

.(w - i%_)
.[(¢: + c_)/('7- _)- c_]

for A,/_, and C respectively. Also, the inverse transfor-

mation matrix is given by

[k=(1- cz/_=)

[k,(z - ¢_/_2)

lk_(z- ¢_/_=)

B(¢z_ _)
Z(¢_+ _)

_:x('7 - 1)uc -2
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(B.2)
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where, 0 = k_u + kyv + kzw and, for example, k. = k./(k_ + k_ + k_) 1/2, etc.

Also, ¢2 = 0.5("/- 1)(u 2 + v 2 + w2), o_ = p/V'2c and 3 = 1/V'2pc.
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